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ABSTRACT 

We enhance the realm of combinatorial game theory by introducing three new impartial 

games. These games are born from economic and mathematical topics—both current and 

classic—in an effort to gather interest and provide potential teaching tools. The three games 

are Atropos, based on Sperner's Lemma; Matchmaker, inspired by the Stable Matching 

problem; and Dictator, based on Arrow's Impossibility Theorem. 

The first of these, Atropos, has already gained some popularity. Here, players alternate 

choosing colors for vertices of a two-dimensional Sperner simplex. A player loses when 

their play creates a three-colored triangle. We show many variants of Atropos, one which 

is PSPACE-complete. 

Our second game, Matchmaker, uses the two players as matchmakers for two lists of 

candidates. In order to increase the playability, we have limited the scope to settings with 

universal preference lists. Players take turns matching one couple and the player who 

makes the last move to reach the stable configuration wins the game. Again, we have many 

versions of this game and show a few which are solvable in polynomial time. 

The last of these games, Dictator is played on an partially-filled list of ballots which are 

the input to a voting function. In this game, players take turns adding a candidate to one of 

the ballots, but must avoid creating a situation either where one of the ballots matches the 

output or the ballots cause the function to violate one of Arrow's requirements for fairness. 

Two natural problems arise: how to detect violations by the opponent and how to play so 

that the opponent is the first to cause a violation. We address both in different versions of 

Dictator. 
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In addition, we discuss the general benefits of such games, as well as how computational 

complexity is an important aspect of their enjoyability. Finally, we describe open problems 

from our games as well as suggest some new possibilities for future combinatorial games. 

vin 



www.manaraa.com

Contents 

Acknowledgments iv 

Contents ix 

List of Tables xii 

List of Figures xiii 

List of Abbreviations xvii 

1 Introduction 1 

2 Notation and Definitions 5 

2.1 Basic Definitions 5 

2.2 Definitions of New Games 7 

2.2.1 Atropos 7 

2.2.2 Matchmaker 7 

2.2.3 Dictator 7 

3 Game Creation &: Design 9 

3.1 Hex 9 

3.2 Sperner's Lemma 10 

3.2.1 Three-Player Atropos 12 

3.2.2 Unrestricted Atropos 12 

3.2.3 (Restricted) Atropos 13 

3.3 Stable Marriage 13 

3.3.1 Full Matchmaker . . . 15 

3.3.2 Matchmaker 16 



www.manaraa.com

3.3.3 Stubborn Matchmaker 16 

3.4 Arrow's Theorem 17 

3.5 Summary 29 

4 Computational Complexity of Games 31 

4.1 Atropos 32 

4.1.1 Taking Hints from GEOGRAPHY 33 

4.1.2 Reduction Widgets 35 

4.1.3 Paths 36 

4.1.4 Variables 38 

4.1.5 Splitting and Rejoining Paths 40 

4.1.6 Path Crossing 41 

4.1.7 Parity Switching 42 

4.1.8 Sample Reduction : 43 

4.1.9 Some Additional Concerns 45 

4.1.10 Algorithmic Reduction: Putting the Pieces Together 46 

4.2 Unrestricted Atropos 51 

4.3 Full Matchmaker 57 

4.4 Basic Dictator 59 

4.5 Dictator 61 

4.6 Other Game Complexities . . 62 

5 Programming to Solve Games 63 

5.1 Nimbers for Impartial Games 63 

5.2 Atropos 64 

5.3 Stubborn Matchmaker 66 

6 "Making it real" 73 

6.1 Atropos 73 

6.1.1 Correctly Coloring the Border 73 

6.1.2 Borders in the Physical Prototype 75 

x 



www.manaraa.com

6.1.3 Extensions to the Physical Game 75 

6.1.4 Atropos with Dice 76 

6.1.5 Atropos with Cards 79 

6.1.6 An Automated Atropos Opponent 81 

6.1.7 Atropos Variants 82 

6.1.8 Atropos for Facebook 83 

6.2 Matchmaker 83 

6.2.1 Poster Matchmaker 83 

6.3 Dictator 85 

6.4 Summary 86 

7 Pedagogical Contributions 88 

7.1 Atropos 88 

7.2 Matchmaker 89 

7.3 Dictator 90 

8 Conclusions 91 

8.1 Atropos 91 

8.2 Matchmaker 92 

8.3 Dictator 92 

8.4 Overall Conclusions 93 

9 Future Work 95 

9.1 Atropos 95 

9.2 Matchmaker . 96 

9.3 Dictator 97 

Bibliography 99 

Curriculum Vitae 102 

XI 



www.manaraa.com

List of Tables 

5.1 Some known results for Stubborn Matchmaker. The left-hand side of the 

table lists the number of unmatched pairs. Above, the first number in the 

pair is the minimum number of loners, while the right is the larger number 

of loners. Listed nimbers assume the board has no crosses 70 

5.2 More known results for Stubborn Matchmaker. The notation is the same as 

in the previous table, but we start with five free pairs, as boards with less 

do not exist at this size 71 

5.3 More known results for Stubborn Matchmaker. The notation is the same as 

in the previous table, but we start with six free pairs, as boards with less do 

not exist at this size 71 

5.4 More known results for Stubborn Matchmaker. The notation is the same as 

in the previous table, but we start with eight free pairs, as boards with less 

do not exist at this size 72 



www.manaraa.com

List of Figures 

2.1 Prom left to right: A barred circle, a shaded circle and a filled circle 6 

3.1 An Empty Hex Board 10 

3.2 An empty Atropos Board of size seven (the number of open circles on a side). 11 

3.3 Left: empty Matchmaker board. Middle: fully-matched board. Right: the 

only stable Matchmaker configuration possible 15 

3.4 An empty Dictator board, where n = 4 and m = 5 19 

3.5 This board violates Pareto efficiency; in all ballots, D > B 19 

3.6 This board also violates Pareto 20 

3.7 We can use IIA to show that this board violates Pareto 20 

3.8 This board violates Pareto: D > A in all ballots 21 

3.9 The three lower boards are the candidate cases of the top board at the entry 

marked with a star 24 

3.10 This board cannot have a dictator, but we cannot show a Pareto violation 

in Dictator. 26 

3.11 Left: counterexample for using {A,B,D} transformations. Right: coun

terexample for {A, C, D} 27 

3.12 We need more than one IIA-manipulation on this board to find a violation. 28 

3.13 A sequence of IIA-manipulations leading to a Pareto violation 29 

4.1 Construction Sketch: End of the Game. Clause c, contains the literals xa, Xb,xc. 34 

4.2 Construction Sketch: Setting the Variables. The Variable Investigation 

Scheme is laid out in Figure 4.1 35 



www.manaraa.com

4.3 A Single-Symbol Path 36 

4.4 A Two-Symbol Path 36 

4.5 A Switch from Two-Symbols to Single-Symbol 37 

4.6 A 60 degree turn in a One-Symbol Path 37 

4.7 Another 60 degree turn in a One-Symbol Path 38 

4.8 Variable Widget 38 

4.9 A Premature Play at Xj 39 

4.10 This widget splits a path 40 

4.11 This widget converges two paths 41 

4.12 This widget crosses two paths 42 

4.13 This widget effectively switches the order of play in a path 43 

4.14 Atropos board equivalent to 3x : \/y : 3z : [(x V y) A (y V z) A (y V ~z)\ . . . . 44 

4.15 Filling in Holes Between the Widgets. We also remove the unnecessary 

notation from the nodes (S is still the start node, and must be denoted). . . 45 

4.16 An empty hex tile. The border of the tile will overlap with neighboring tiles. 46 

4.17 Two paths come in from the top, cross paths, and exit through the bottom. 48 

4.18 These paths don't need to cross and thus just go straight down 49 

4.19 This tile joins two paths from above and exits to the right 50 

4.20 This tile joins two paths from above and exits to the left 51 

4.21 This tile contains a variable widget 52 

4.22 In this splitter tile, one path splits into two 53 

4.23 Basic parity "switches". A play in either of these will create an even number 

of bad triangles. We refer to these as A-Switches 53 

4.24 New Symbols for parity switch diagrams. On the left, the circle does not 

have any safe colors available. On the right, the circle can only be colored 

with bars 54 

4.25 B-Switch. On the left is the general form. The right figure is a diagram of 

an example B-Switch 54 

xiv 



www.manaraa.com

4.26 C-Switch. On the left is the general form. The right figure is a diagram of 

an example C-Switch 55 

4.27 D-Switch. On the left is the general form. The right figure is a diagram of 

an example D-Switch 55 

4.28 E-Switch. On the left is the general form. The right figure is a diagram of 

an example E-Switch 56 

4.29 In a Basic Dictator game. Only the third ballot could be the dictator. Thus, 

players must avoid playing in that ballot as long as possible. Any play there 

will either create the dictator or make the dictator impossible, violating Pareto. 60 

4.30 Near the end of a Basic Dictator game. Both of the unfilled ballots have the 

potential to be a dictator. The next player must choose one of them and 

play so that the ballot is not a dictator. The other player will then lose by 

either creating the Dictator or violating IIA and Pareto. Even though there 

are potentially more than one Dictator, this does not change the parity of 

the outcome 61 

5.1 We conjecture: the nimber of the left game is equal to the nimber of the 

right game ©1 67 

5.2 Left: a matching, M. Right: M(3,5). We conjecture that the nimbers for 

these boards are the same 67 

5.3 Left: a matching, M. Right: Mun_2(5,3). We conjecture that the nimbers 

for these boards are the same 68 

6.1 The online Atropos applet 74 

6.2 Layout of coloration for prototype board. We can cover inside rows with 

white poker chips to increase the size of the board 76 

6.3 ' Photo of the actual prototype 77 

6.4 An example for the dice version of Atropos. If the next play must take place 

in the top-most open circle, we can analyze the probability a player losing 

in the next few turns 78 

xv 



www.manaraa.com

6.5 Applet for Matchmaker 84 

XVI 



www.manaraa.com

List of Abbreviations 

EXPTIME Exponential Time 

IAP Industrial Affiliates Program 

IIA Independence of Irrelevant Alternatives 

NP Nondeterministic Polynomial Time 

PPAD Polynomial Parity Arguments on Directed graphs 

PSPACE Polynomial Space 

QBF Quantified Boolean Formula 

TQBF True Quantified Boolean Formula 



www.manaraa.com

Chapter 1 

Introduction 

The relevance of game theory in computing continues to grow. Somewhat surprisingly, 

board games provide intuitive vehicles for characterizing and analysing aspects at the core 

of theoretical computer science. Due to the inherent competition in games, study of these 

topics can be deceptively entertaining; even the tedium of scientific progress can be disguised 

as an enjoyable undertaking. 

Moreover, the central topic of computational complexity is perhaps nowhere more obvi

ous than in the realm of combinatorial games. Even those unschooled in computer science— 

much less in complexity theory—understand that the player who knows the game better 

will have a greater chance to win. It is not prudent for someone to attempt to predict all 

the possible moves in advance. Instead, one must try to figure out, from the rules of the 

game, whether there is a trick to learning easily how best to play. 

For example, a novice nim player will have trouble against someone who knows how 

to manipulate nimbers and quickly evaluate game boards. "This game is hard!" they 

proclaim, after losing again. "No, Nim is actually very easy," their opponent assures them, 

before giving away the trick1. This is the same language we use in complexity: games which 

are easy have some algorithmic trick providing fast evaluation, while games that are hard 

appear not to have any such shortcuts. 
xJust xor the sizes of the piles together. If the result is zero, then no winning strategy exists from this 

board. Otherwise, a winning strategy does exist! 
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On the other hand, this study has a reversed perspective towards these hardness results. 

For .our two players, once the trick is revealed, they may never again play the game of Nim 

together, as there is no longer any suspense in the game play. Usually, the existence of an 

efficient algorithm is a positive result for a problem. Instead, the more interesting games for 

competetive play are those without an efficient trick. Sometimes this means that we don't 

yet know enough about the game and sometimes this means we have proven a hardness 

result. Such a proof of, say, PSPv4Ci?-hardness means not only that no trick is known, 

but that such a shortcut for one hard game translates into a shortcut for many! Thus, 

these tricks are unlikely to exist; hard games may require exponential-sized calculations to 

determine a winner. 

This is the affirmation which gives humans a chance against computer players. Although 

supercomputers can evaluate far more Chess moves per second than the best human player, 

they cannot always find the best move. Thus, humans sometimes beat the machines. It is 

the hardness of games which reveals this strategic difference. The interesting aspect of the 

competition is the difference in evaluation patterns between humans and machines, instead 

of the base calculation speed. 

Aside from this intuitive hardness versus easiness in games, there lies a true relationship 

to computational problems. Unlike Chess, which is EXPTIME-complete, our games are 

all in PSPACE, and many have potential for P^P^lCE-completeness. Aside from games, 

this class is indicative of many other computational concerns. Problems in the realms of 

alternation, deadlocks, periodic optimization and interactive protocols are often complete 

for PSPACE. These concerns beg a more thorough study of the class. Thus, as we explore 

these games, we will often hope to push the boundary of completeness. Which properties 

make a game complete? What changes to the game can we make to either push it into or 

out of completeness? 

Our first such attempt in this dissertation hinges on our variants of the game Atropos. 

By changing the rules on where players are allowed to make their move, the game became 

more difficult, and we proved that it is P^P^CE-complete. From here, we considered 
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looking at other hard games. What if we apply the same movement restrictions to a well-

known P.S'PACE-complete game such as Hex? It turns out that this does not change the 

complexity of the game in general2. Despite the similarities between Atropos and Hex, 

these movement changes may not have the same or opposite effects. 

In this work, we focus on the realm of two-player impartial games. An impartial game 

is one in which for any game board (state), all players have the same possible moves on 

their turn [4]. The focus of our work is the analysis of three impartial games: Match

maker, Atropos and Dictator, all of which were invented in the course of this research. The 

first of these, Matchmaker, is based on the Stable Marriage problem. The players act as 

matchmakers themselves, taking turns pairing candidates from two separate groups until 

the system reaches equilibrium. We define the winner to be the player who made the last 

move. 

We also discuss the "fixed-point" game Atropos. This game is inspired by Sperner's 

Lemma, to the point that the game board begins as an incomplete instance of the two-

dimensional version of the lemma. In this game, players take turns painting uncolored 

nodes of a triangular array, choosing from either red, blue or green. As soon as a player 

creates a triangle with one vertex painted each of the three colors, that player loses. As 

with Matchmaker, we define multiple variants of Atropos. 

The third game, Dictator, is derived from Arrow's Theorem concerning fairness in vot

ing. In this game, players alternate filling empty slots in a list of ballots to be read by a 

social choice function. A player loses when they either demonstrate that a dictator exists 

in the system or find that one of Arrow's conditions for fairness have been violated. This 

game provides the extra difficulty of proving that the opposing player has made an error 

along the way, giving it an added dimension of difficulty not found in our other games. 

The sections of this dissertation are laid out in terms of different aspects of games in 

general. First, Chapter 2 offers a reference list of notation and definitions. Then, in Chapter 

3, we discuss the creation of different games. We follow this by presenting results based on 

2Reisch's reduction to Hex creates boards with no neighboring uncolored hexagons, thus movement is 
already unrestricted by our Atropos rules and the same reduction applies[16]. 
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the analysis of games and finding game strategies in Chapter 4. This chapter is based on 

provable findings for games. The next two chapters handle actual implementations for the 

games. Chapter 5 covers implementing code to test and analyze games, while Chapter 6 

describes hurdles in designing actual playable versions of games. This chapter covers both 

physical and software prototypes and versions of our games. 

After these technical discussions, we make summarize our contributions in two separate 

chapters. First, we make the point of discussing the pedagogical uses of our games in 

Chapter 7. Following this, Chapter 8 relates our other contributions and conclusions. 

Next, Chapter 9and lists a number of open problems and questions stemming from the 

work accomplished here. Some of these topics are partially-researched from the work in 

this thesis while others are questions that naturally arise from these new games. 

Finally, I wish the reader enjoyment in this exploration of games. Although this material 

is often difficult to experiment with in the absence of opponents, this has been an extremely 

fun thesis topic and it is the greatest wish that the inherent fun of studying board games 

carries over to those who partake in learning about or playing any variant of Atropos, 

Matchmaker or Dictator. Please, enjoy! 
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Chapter 2 

Notat ion and Definitions 

In this chapter, we list different notation used .throughout this dissertation. Readers may 

use this as both a reference tool for looking up background terms used within as well as a 

cheat sheet for locating descriptions of games defined in later chapters. 

2.1 Basic Definitions 

In this section we list definitions used by this dissertation. Many of these definitions are 

specific for discussing combinatorial game theory, while others are simply mathematical 

tools we will use. 

Definition 2.1.1 (Label Set) [n] = { 1 , . . . , n} also known as the Label Set of size n. 

Although we will not often refer to label sets as such, we find that the notation is 

extremely useful. 

Definition 2.1.2 (Combinatorial Game [1]) A combinatorial game, G = {L\R}, is a 

pair of lists of combinatorial games, L and R, such that the "left player" may move to any 

game in L and the "right player" may move to any game in R. 

For any game state, we want to define the children of that state: 
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Definition 2.1.3 (Child) Game G' is a child of game G = {L\R} if G' E L or G' € R. 

Impartial games are games in which, intuitively, there is no identification between the 

players in the game state. All of the games studied in this dissertation are impartial games. 

Definition 2.1.4 (Impartial Game [4]) A game, G = {L\R} is impartial if L = R. 

In order to evaluate these games, we will need to use the Minimum Excluded number: 

Definition 2.1.5 (mex) mex (S) = min((N U {0}) \ S) 

Prom here we can do Sprague-Grundy evaluation to determine the value of an impartial 

game. 

Definition 2.1.6 (£[20] [12]) 

0, G has. no children and is a loss. 

0(G) — \ 1, G has no children and is a win. 

mex ({G(G')\G' is a child of G}), otherwise 

Definition 2.1.7 (Nimber) The nimber of a game, G is the natural number G(G). 

In one of our games, we will need to discuss painting circles one of three different colors 

(or leaving them unpainted). Soemtimes we will talk about the actual colors (red, green 

and blue), but other times we use three different symbols: bars, shading and filled-in, as 

demonstrated in figure 2.1. We will often use the verbs barring, shading and filling to 

describe the action of assigning the relative symbol to a node. These symbols both allow 

us to be flexible with the notation (they can represent any permutation of the three colors) 

and also provide a clear black-and-white method for describing colors of board situations. 

(D> 
Figure 2.1: From left to right: A barred circle, a shaded circle and a filled circle. 
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2.2 Definitions of New Games 

In this section, we list'games invented in this work. We do not provide full definitions here, 

but reference where they may be found in coming chapters. 

2.2.1 Atropos 

We define two Atropos variants in Chapter 3. Although we consider a Three-Player version 

in Section 3.2.1, this is not a formal definition (mostly as this is a study narrowed to two-

player games). Instead, in Definition 3.2.2, we present our first game: Unrestricted Atropos. 

Following this, Definition 3.2.3 reveals the rules for the standard version of Atropos. 

Due to the popularity and interest in Atropos, we have also developed a few randomized 

versions of the game. We define a die-based version in Definition 6.1.1 and an engaging 

variant using cards in Definition 6.1.2. For more than two players, the card version in 6.1.3 

works very well. When people ask to play with me, they often would rather play one of 

these versions! 

2.2.2 Matchmaker 

Three versions of Matchmaker games are available in the same chapter. First, we describe 

Full Matchmaker in Definition 3.3.1. After this, we discover our basic game of Matchmaker 

in Definition 3.3.2. Finally, Definition 3.3.3 gives us Stubborn Matchmaker, the most-

studied of our variants. 

2.2.3 Dictator 

From Arrow's Theorem, we create two versions of Dictator. The game Basic Dictator, 

described in Definition 3.4.7, gives us most of the rules and the game board. Changing the 

rules for proof construction in Definition 3.4.15 yields Tree-Proof Dictator, which prevents 

players from invoking Arrow's Theorem for their proofs. Since proofs for this version become 

too unwieldy, however, we introduce a Chain-Proof variant of the game in Definition 3.4.16 
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which winds up being our final version. 
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Chapter 3 

Game Creation &; Design 

In this chapter, we describe the invention of games which occured during the research for 

this thesis. Fundamentally, the inspiration for each of these games arises from a variety of 

interdisciplinary areas related to computer science. From this inception, we test and tweak 

the game design until we reach an acceptable format. Often, we are looking to conform to 

the adage, "easy to play, hard to master". In order to do this, we will seek to revise the 

game until we find a version where strategies are computationally hard to determine. As 

an example, we look at the classic game of Hex, a two-player game played on a hexagonal 

grid (see Figure 3.1). Hex has been shown to be PSPACE-complete [16]. 

3.1 Hex 

Indeed, the design and rules of Hex are simple enough that it was independently invented 

both by mathematician and poet Piet Hein (1942) and mathematician and economist John 

Nash (1947). The empty Hex board is exactly the hexagonal grid shown in Figure 3.1 with 

the four sides colored: two blue sides opposite each other, and the other two red. Initially 

all hexagons are uncolored. The players are named "Red" and "Blue" and on their turn, 

that player paints one of the uncolored hexagons their own color. The goal for both players 

is to form a connected path of their-color hexagons bridging their two sides. 
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Figure 3.1: An Empty Hex Board. 

While these above rules are extremely simple—anyone can learn to make legal moves 

instantly—strategically playing the game requires a great amount of practice. 

One of the elegant aspects of Hex is that the game can never end in a draw. Nash 

initially proved this when he developed the game. This "Hex Theorem"—that exactly one 

of the two players will have won at the end—has even been shown to be equivalent to the 

Brouwer Fixed-Point theorem [10]. Due to this correlation, Hex is often referred to as a 

fixed-point game. 

3.2 Sperner's Lemma 

Just as the Hex Theorem is the basis of the game Hex, we use other such mathematical 

foundations to develop further games. Another such fact equivalent to the Brouwer Fixed-

Point theorem is Sperner's Lemma. In 1928, mathematician Emanuel Sperner noticed a 

strange phenomenon in the (n+l)-coloring of an n-dimensional simplex. By enforcing a few 

simple rules on the coloring only of the boundary vertices, he discovered at least one cell in 

the simplex must have a vertex of each color, no matter how the colors on the interior are 

chosen [19]. The two-dimensional (three-color) space for this is known as Sperner's Triangle 

and it is the board for our first game. 

Inspired by the relationships of Hex and Sperner's Lemma to Brouwer, Atropos uses a 

"hollow" Sperner Triangle as the game board. The game uses three colors: red, green and 
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blue, and only the boundary of the triangle begins already colored. This initial coloration 

is simply an enforcement of Sperner's boundary conditions, ensuring that by the time the 

board is entirely colored, a three-colored triangle will exist. The left-hand side of the 

triangle is colored in alternating green and red circles (starting at the bottom with green), 

the right-hand side is colored with alternating green and blue (starting at the bottom with 

blue), while the bottom is colored red and blue (starting on the left with red) (see Figure 

3.2). 

©© 
©o© ®oo© ©ooo® ©oooo© ©ooooo® ©oooooo© ©ooooooo® 

®®@®®®®® 
Figure 3.2: An empty Atropos Board of size seven (the number of open circles on a side). 

From the starting configuration, the plan for Atropos is simple: players take turns 

coloring the uncolored nodes until a three-colored triangle is created, signalling the end of 

the game (by Sperner's Lemma, this end must be reached). Since it is relatively easy to 

create this triangle, we determined that the player who creates this triangle loses. Because 

of this, we refer to such a triangle as a "bad triangle". 

Definition 3.2.1 (Bad Triangle) In a Sperner Triangle, a bad triangle is an atomic 

triangle which has vertices colored each of the three colors. 

From this basic plan, many versions of Atropos came about before we settled on the 

canonical variant. 
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3.2.1 Three-Player Atropos 

Blindly following the scheme of Hex, we happened upon a three-player variant of Atropos. 

Each player is assigned to one of the three colors: Red, Green or Blue, and on their turn, 

paints one of the uncolored circles with their color. By the basic rules, the player forced 

to create a three-colored triangle loses. The winner is then denned as the player who took 

their turn directly prior to the loser. The third player neither "wins" nor "loses". 

Unfortunately, this awkwardness for that third player's outcome carries over into the 

actual game play. With this in mind, we move to defining variants for only two players. 

3.2.2 Unrestricted Atropos 

In order to change the scheme to fit two players, it no longer makes sense to assign each 

player to a color. Instead we allow both players to choose from all colors on each turn. 

Definition 3.2.2 (Unrestricted Atropos) Unrestricted Atropos is a game played be

tween two players on an incomplete Sperner Triangle. Each turn, a player chooses one 

of the uncolored circles and paints it either red, green or blue. The loser of the game is the 

first player to create a three-colored triangle. 

Notice that this game is impartial; players have exactly the same options for playing and 

have the same winning criteria (see Definition 2.1.4). Additionally, the loss of the coloring-

restrictions allow more freedom between the players. Unfortunately, there appear to be 

simple strategies for winning this game. In Section 4.2, we show some intuition arguing 

that from the starting configuration this game can always be won by the player who would 

not paint the last circle (if the whole board were to be colored). Thus, to determine whether 

or not you can win, all you should do is determine the parity of the number of circles in 

the initial triangle. If there are an even number, the first player will win. Otherwise, the 

second player has a winning strategy. 
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3.2.3 (Restricted) Atropos 

We find that with a slight change to the rules, we can remove this potential simplicity. 

Instead of allowing players to paint whichever circle they desire, we enforce that they play 

adjacent to the last move. 

Definition 3.2.3 ((Restricted) Atropos) (Restricted) Atropos is exactly the same game 

as Unrestricted Atropos, aside from the following change of rules. The first player begins 

by painting whichever circle they choose. On each subsequent turn, the current player must 

choose an circle adjacent to the last move to paint. If no such circle exists, the current 

player may choose any uncolored circle on the board to paint. 

With the rules change, we finally reach our "easy to play, hard to master" version of 

the game. Even with this added rule, the game is still very easy to learn to play; the effect 

of the adjacency rule is just to reduce the number of options each player has on a turn. 

Instead of making the winning strategem simpler, however, this restriction actually makes 

it more difficult to plan ahead or interfere with your opponents' intentions. From here on, 

we will often refer to this game as simply Atropos. In Theorem 4.1.1 we show that solving 

the problem of determining whether the current player has a winning strategy in Atropos 

is PSPACE-complete. 

3.3 Stable Marriage 

For the inspiration for further games, we again dip into mathematical concepts. The Stable 

Marriage problem [11] is the mathematical problem of finding a stable matching across two 

equal-sized sets of candidates. We refer to our sets as West and East so that |Wes£| = 

\East\ — n. Each candidate, W{ E West has a preference list (strict ordering) on the 

candidates in East and vice versa for each candidate, e, € East. We treat these lists as 

functions from one group to {1 ,2 , . . . , n}. Thus, the preferences of Wi E West is described 

by pWi : East —• {1, 2 , . . . , n} so that if u>i prefers ej most, then pWi(^j) = 1 a n d so forth, 

so that if pWi(ek) = n, e& is the least desirable candidate for Wi. 
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A matching of the candidates is simply a bijection from West to East. A matching, 

M, is stable if V(u;;,efc), (wj,ei) 6 M : pWi(ek) < pWi(ei) -> pe,(^i) < Pet(wj) (and vice 

versa). Informally, a matching is stable if no two candidates both prefer each other over 

the candidates they are matched with. 

The famous Stable Marriage Problem [11] is the problem of finding a stable matching 

given the two sets of candidates and their preferences. In 1962, Gale and Shapely deter

mined that a stable marriage could always be found, and described an algorithm for finding 

the correct matching. In this setting, we have one authority who is performing the pairings 

and matching candidates to each other. 

For the purposes of a game, we want to allow the players to be these authorities, or 

matchmakers. We allow players to change the current matching by proposing a new pair 

(w, e) which is legal only if w and e prefer each other more than their current partners. 

Whenever a legal match is proposed, the board changes in the following way. If (w, e) is 

the proposed pair, V(io, e') and (w', e) € M, the new marriage, M' = MU{(io, e), (u/, e')} \ 

{(w, e'), («/, e)}. We will define the game to end once the state reaches a stable marriage; 

no more matches can take place. The player who performs the last legal match will be the 

winner. 

With these rules, we already have a game, though it is a very complex game. Each 

candidate has its own preference list, meaning that the game requires 0(n2) information 

before players even begin to make moves. In keeping with our desire for simple game states, 

we wish to remove this vast amount of data. Thus, instead of having individual preference 

lists, we give a universal ranking for both groups. 

Now, Vu)i,Wj G West : pWi = pWj and Ve*, ej € East : pei = pej. With this universal 

ordering, we now refer to w\ (or, simply "1") as the most-preferred candidate in West, 

w% (or 2) as the second-most-preferred candidate, and so forth. We do the same for the 

elements of East. With this ranking, we can now draw out a board for our matching game 

(see Figure 3.3). 
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Figure 3.3: Left: empty Matchmaker board. Middle: fully-matched board. Right: the only 
stable Matchmaker configuration possible. 

3.3.1 Full Matchmaker 

All that remains for our game is to choose a starting configuration. We define Full Match

maker to begin with the top candidate in West paired with the worst candidate in East, 

the second-best candidate in West paired with the second-worst candidate in East and so 

forth: 

Definition 3.3.1 (Full Matchmaker) Full Matchmaker is the two-player game where 

players alternate pairing candidates from two sets, West = {w\,W2, • • •, wn} and East — 

{ei,e2, • • • ,en}. The starting position has the following matched pairs Vfc : (tUfc,en_fc+i). 

Players change the board by performing a new legal match. The first player who cannot 

make a match loses the game. 

Unfortunately, it is too simple to determine who will win this game. Even worse, each 

turn, all moves a player can make are equivalent! To determine who will win the game, 
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we simply need to count the number of crosses between edges on the board at any state. 

If there are an odd number, the next player will win (no matter which move they make). 

Otherwise, the second player will win the game. We discuss a proof of this property in 

Lemma 4.3.1. 

In order to alleviate this simplicity, we allow boards to not have all n pairs in the 

matchings. Prom this, we will define a new game. 

3.3.2 Matchmaker 

A partial matching is a bijection between subsets West' C West and East' C East. First 

we need to revise our defintion of when a pair is legal to propose. Our clarification is simply 

that all candidates prefer to be matched with anyone rather than not be in the matching. 

Additionally, we need to alter the rule for incorporating proposed matches: if a player 

proposes a pair, (w, e), legal for the current partial match, M, the new (partial) match, 

M' = M\J{(w,e),(w',e')}\{(w,e'),(w',e)},\/(w,e'),(w',e) e M. Now, if a pair is proposed 

and both candidates are not already matched, only the proposed pair is assimilated into 

the new matching; no pair of spurned candidates is added. 

Definition 3.3.2 (Matchmaker) Matchmaker is exactly the same game as Full Match

maker, except that we use the following rule for matching candidates. After proposing a 

legal match, (w,e), on a game state with (partial) matching, M, the new game state will 

have the match 

M' = M U {(w, e), K , e')} \ {(w, e'), K , e)} , V(w, e'), (w', e) e M. 

The starting position for this game is the empty matching: M — {}. 

3.3.3 S tubborn Matchmaker 

Alternatively, we can simplify the game a bit by restricting exactly which pairs are legal 

plays. We change our rule by enforcing that, for some matching M, (w, e) is not a legal 

pair if, for some e' € East : (w,e') € M but Vu/ € West : (w',e) <£ M (or vice versa). 
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Now a legal pair must consist of either two unmatched candidates, or two already-matched 

candidates. 

Definition 3.3.3 (Stubborn Matchmaker) Stubborn Matchmaker is the same game as 

Matchmaker, except that it uses the following rule to determine whether a proposed pair is 

legal: for some matching M,, (u>, e) is not a legal pair if, for some e' € East : (w, e') € M 

but \/w' € West : (w1, e) ^ M (or vice versa). 

We have analyzed many game situations for both Matchmaker and Stubborn Match

maker. We describe this analysis in Section 5.3. 

3.4 Arrow's Theorem 

Another bit of inspiration from economics leads us to a final game. This game is based on 

voting systems and has rules in place as a reference to Arrow's (Impossiblity) Theorem for 

social choice functions [3]. In this schema, we have a function which takes as input a list of 

ballots, each of which are complete preference lists on a set of candidates. This social choice 

function then returns a seperate preference list on the candidates, revealing the outcome of 

the election. 

For our purposes, we use the following definitions: 

Definition 3.4.1 (Preference List) A preference list on a set (of candidates) S is an 

ordered tuple where each entry is a unique element of S. If element A is in list L before 

element B, we say that A is preferred to B (or A > B) in L. 

Definition 3.4.2 (Social Choice Function) A social choice function on a set candidates 

S is a function which takes preference lists on S as inputs and returns a preference list also 

on S. 

Definition 3.4.3 (Pareto Efficiency) A social choice function, F on S, is pareto effi

cient if for any two candidates A € S and B € S and any preference lists Li,...,Ln on S, 

where Vi : A > B in Li, then A > B in F(L\,..., Ln). 
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Definition 3.4.4 (Dictatorship) A social choice function, F, is a dictatorship if3i 6 [n] 

such that VLi , . . . , Ln : F(L\,..., Ln) = Lj. 

Definition 3.4.5 (Independence of Irrelevant Alternatives (IIA)) A social choice 

function, F, satisfies independence of irrelevant alternatives (IIA) ifVA,B, Yi,...,Yn, 

Zi,..., Zn : if Vi : A and B have the same relationship in Y\ and Z\, then A and B have 

the same relationship in F{Y\,. :., Yn) and F(Z\,..., Zn). 

Prom these definitions, we have the following surprising result of Arrow: 

Theorem 3.4.6 (Arrow's Theorem[3]) There does not exist a social choice function F 

which is pareto efficient, satisfies IIA, and also not a dicatorship. 

The surprising facet of this theorem is that although both Pareto efficiency and IIA 

seem to be reasonable desires for a choice function, any voting system that utilizes them 

must also be dictatorship! A constructive version of the proof shows exactly how to find 

the dictator by testing only n different lists of ballots. 

The proof is somewhat difficult to understand; we design an impartial game to help 

explain the effects of IIA and Pareto efficiency that force the dictatorship. 

Definition 3.4.7 (Basic Dictator) Basic Dictator is a game played on a partially-filled 

ballot list, Xi,... ,Xm, where each ballot has n entries. The initial state is a list of empty 

ballots (see Figure 3.4) while any state is legal if none of the ballots have exactly one un

filled slot. The candidate set is [n], though often if n < 26, we use A,B,...,nth letter of 

the English alphabet. We assume that there is some social choice function F, such that 

F(Xi,..., Xm) = ( 1 ,2 ,3 , . . . , n) and that F satisfies IIA. 

There are two phases to each turn: 

• Proving F Is Not Pareto—The current player may attempt to prove that F cannot 

satisfy Pareto efficiency. If the current player successfully proves this, they win. The 

player must show that Pareto efficiency is violated no matter how the rest of the ballots 

are filled out. 
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• Filling a Slot—The current player chooses one of the unfilled slots in a ballot and a 

candidate not yet listed in that ballot. That slot is then filled with that candidate. If 

only one more slot remains unfilled in that ballot, it is also filled with the remaining 

candidate not yet in the ballot. If this creates a ballot equal to (1,2, 3 , . . . , n) (a possible 

dictator) then the current player loses. 

( 
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"N 

J 
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D 

Figure 3.4: An empty Dictator board, where n = 4 and m = 5. 

Thus the goal is to avoid either creating a "dictator" or violating Pareto efficiency. Also, 

a good player will be able to see when boards violate this Pareto property. For example, in 

Figure 3.5 we have a board which violates Pareto. Even though not all the slots are filled 

in, we can see that D > B in all ballots. Thus, since F(X\,..., X$) has B > D, F is not 

Pareto efficient. The next player may use this as their proof to win the game. 
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Figure 3.5: This board violates Pareto efficiency; in all ballots, D > B. 

In fact, using IIA, we can prove even more difficult violations. If we change the board 

from Figure 3.5 by just swapping the two entries in the fifth ballot (see Figure 3.6), we find 

still another violating board. Here our proof is a bit more difficult. 
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Figure 3.6: This board also violates Pareto. 

Lemma 3.4.8 The social-choice function in Figure 3.6 violates Pareto efficiency. 

Proof. We must show that F which is consistent with this board violates Pareto. This 

uses a similar strategy as used in proofs of Arrow's Theorem. 

Let X — (Xi,..., Xs) be a list of our ballots. Let Y be equal to X except that the D 

and B are switched (this is exactly the ballot list shown in Figure 3.5). Since IIA holds for 

our F, and D and B are adjacent to each other in that last ballot, F(X) and F(Y) may 

differ in their relationship between D and B, but not with any other candidates. Thus, 

neither may change their relationship with C, which is between them. Thus, F(Y) must 

equal F(X). However, by Pareto (as we showed for the previous example) D > B in all 

the ballots in Y and thus F(Y) should rank D > B. 

Instead, F(Y) ranks B > D. Thus, F does not satisfy Pareto. • 

We can have even more difficult boards from which we can prove a violation. A further 

example is given in Figure 3.7. 
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Figure 3.7: We can use IIA to show that this board violates Pareto. 
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Lemma 3.4.9 The social-choice function in Figure 3.7 violates Pareto efficiency. 

Proof. We must show that F violates Pareto. This time we will use IIA on three candi

dates (A, C, and D) and make more changes to create a board which is a clear violation. 

Using IIA on A, C and D, we can rearrange the board in Figure 3.7 to the board in 

Figure 3.8. For most of the ballots, this transformation is straightforward: the first ballot 

does not change, and A and D are definitely adjacent in the third and fourth ballots (and 

can thus be reordered by IIA). In the second ballot, all three are above B, so we can just 

put D up top and A beneath. In the last, since C and D are in the middle, A must be 

adjacent to one of them. Thus, all of A, C and D are adjacent, and we can move them 

to put D above A in the middle, moving C either up top or to the bottom (though we 

leave it out instead of diagramming both cases). Now, with our reorganized board, D > A. 

Since D cannot have changed relationship to B in the result, it cannot have risen above A 

(it could have swapped with C, and thus the bottom of the result list is not shown in our 

example). Thus we have shown a violation of Pareto. • 

{A} 
V 

= to 
{do} 

Figure 3.8: This board violates Pareto: D > A in all ballots. 

As mentioned, these proofs use basic manipulations of IIA to find Pareto violations. Any 

logic followed like this teaches the player the mechanics of Arrow's Theorem. Unfortunately, 

there is another, simpler, method of proving the above violation. Instead of actually toying 

with our voting rules, we can just invoke Arrow's Theorem. Since none of the ballots in 

our list can be the dictator (they all have at least one candidate out of place) by Arrow, 

it must be that any IIA-consistent F does not satisfy Pareto. (We will prove more about 
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using Arrow's Theorem in Section 4.4.) Since this realization saps most of the fun from the 

game, we alter the rules slightly to produce a new version of Dictator. 

The big change for this new game is that we will clearly define what steps players may 

use to prove Pareto Violations. This requires a flurry of new definitions. 

The first of these deals with the result of using IIA on a game board. Since the voting 

function's result will become blurry if IIA is used on neighboring candidates (as with the 

manipulation in Figure 3.8, IIA was used on C and D, so their relationship could have 

changed in the result) we need a way to express this as something that still resembles a 

preference list. 

Definition 3.4.10 (Partial Preference List) A partial preference list on candidate set 

S = {X\,..., Xn} is an ordered tuple of disjoint subsets Si,..., Sm of S which cover S. If 

subset Si is in partial preference list L before subset Sj then for any candidate A E Si and 

B € Sj, we say that A is preferred to B (or A> B) in L. 

We will use the following as an intermediate Dictator "board" in a step of proving a 

Pareto Violation. 

Definition 3.4.11 (Proof Board) A proof board, P, on candidate set S is a list of 

partially-filled preference lists on S (the "ballots" of P) and a partial preference list on 

S (the "result" of P). 

The ballots of a proof board, P, are just the input to the social choice function and the 

result describes some of the limits on the output of P on those ballots. 

We would like an explicit way to talk about the effect IIA has on proof terms. First, 

we will look at the effect it has on partial preference lists. The idea here is that if we 

use IIA on candidates which are neighbors in a partial preference list, then we are no 

longer certain about the relationship between those candidates and any other candidates 

in their sets. For example, if we use IIA on B, D, F and the result of the current proof 

board is ({A}, {B, C}, {D}, {E}, {F}) then this should yield a new board where the result 

is ({A}, {B, C, £>}, {E}, {F}). We describe this as "shuffling". 
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Definition 3.4.12 (Shuffling) For any partial preference list, L = (S\,..., Sm), the shuf

fling of L on C C S is the following partial preference list: (Ta^,.... ,Ta^) where T{ is 

the smallest set which contains all the elements of Si and, if 3X, Y 6 C where X € Si and 

Y € Si+i, then Ti = Tj+i and a{i) = j means that Ti is the j t h unique candidate set in the 

UstTi,...,Tm. 

Thus, in our language, we can express the above example by saying: the shuffling of 

({A},{B,C},{D},{E},{F}) on {C,D,F} is ({A},{B,C,D},{E},{F}). This allows us 

to present a clear definition of the effects of an IIA-manipulation in our proofs. 

Definition 3.4.13 (HA-Manipulation) Proof board P' is an IIA-manipulation on a 

subset, C, of the candidate set, S, of proof board P if the result of P' is the shuffling 

of the result of P on C and the ballots of P and P' differ only in their relationships of 

candidates in C. 

IIA-manipulations will be one of the options players have for each step when construct

ing Pareto Violations. We will give them only one other. 

Definition 3.4.14 (Candidate Case) Proof board P' is a candidate case at (i,j) of P 

if P and P' have the same result list and differ in their ballots only in the ith entry of the 

j t h ballot in the following way: P has no candidate listed there while P' does. 

We show an example of candidate cases in Figure 3.9. Notice that a proof board P has 

a Pareto violation exactly if 3(i, j) such that all candidate cases of P at (i,j) have Pareto 

violations. While attempting to show a violation, we allow players to build a proof tree 

at each step, extending their case by using an IIA manipulation or splitting into multiple 

threads by examining all possible candidate cases at one location. Now we provide a new 

definition: 

Definition 3.4.15 (Tree-Proof Dictator) Tree-Proof Dictator has the same rules as 

Basic Dictator (Definition 3.4-7), except that we replace the first phase of the turn with 

the following: 
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Figure 3.9: The three lower boards are the candidate cases of the top board at the entry 
marked with a star. 

• Proving F Is Not Pareto—The current player may prove that F cannot satisfy Pareto 

efficiency. The current player may do this by either showing a Pareto violation on the 

current board, P or recursively finding: either a Pareto violation on an IIA manipu

lation of P on any subset or some i, j where all candidate cases of P at (i, j) violate 

Pareto. 

This game has the interesting property that a player can successfully challenge exactly 

when they could successfully challenge in Basic Dictator; any violation of Pareto Efficiency 

can be shown using a combination of the two proof steps defined above. On the other hand, 
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since a player cannot just invoke Arrow's Theorem, it's not clear whether a proof can be 

found or shown efficiently. This results in players spending a lot of time trying to find a 

correct proof, since they can be certain one exists. Furthermore, the proof structure of a 

tree is not very compatible with casual games; it is easy for one player to describe a long 

proof and lose the other player. We would like proofs to be easier to verify. 

For this reason, we remove the candidate case option for proofs, giving us our final 

version of the game: 

Definition 3.4.16 ((Chain-Proof) Dictator) (Chain-Proof) Dictator is the same game 

as Basic Dictator (Definition 3.4-7), except that we replace the first phase of the turn with 

the following: 

• Proving F Is Not Pareto—The current player may attempt to show that F cannot 

satisfy Pareto efficiency. The current player may do this by either showing a Pareto 

violation on the current board, P or recursively finding a Pareto violation on an IIA 

manipulation of P on any subset. 

Now proofs must have a linear structure; there is no splitting up into various cases. 

This has two effects on the game play. First, it makes the verification of proofs simpler. 

The verifying player needs only to follow each consecutive step and not to recall parts of 

previous steps or keep track of cases yet to be proven. Furthermore, since each step is 

just one IIA manipulation, this process quickly becomes easy to follow after just a little 

practice. 

Second, it is no longer immediately clear when a Pareto violation can be shown. As we 

will show next, there are situations where a Pareto violation exists but cannot be shown 

using these proof rules. Thus, the game play does not have all the difficulty in the proving 

step. Instead the difficulty lies in both parts, which we will talk about further in the next 

chapter. 

All of the examples in Figures 3.5, 3.6 and 3.7 show boards upon which this proof 

method can be used. We now seek a board which cannot have a dictator, but which does 
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not have chain of IIA-manipulations to create a violation. One example can be studied in 

Figure 3.10. Here we have a board which, by Arrow's Theorem, must violate Pareto, but 

would need to use candidate cases. 
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Figure 3.10: This board cannot have a dictator, but we cannot show a Pareto violation in 
Dictator. 

Lemma 3.4.17 We cannot use only IIA-manipulations to prove a Pareto Violation in 

Figure 3.10. 

Proof. In order to show a violation, we would have to use IIA on up to three candidates 

who are not all adjacent in the result list. Thus, in order to force the inconsistency, at least 

either B or C could not be moved by applications of IIA. So, we are allowed to change the 

board by shifting a subset of either {A, B,D} or {A, C, D}. We will show that for each 

of these choices, there is an actual ballot configuration where this subset alone cannot be 

used to violate Pareto. 

• Case 1: using a subset of {A,B,D}. Since we are not going to move the candidate 

C, the result list must have the form (_, _, C, D) (thus it will not suffice to switch only 

A and B). As a counterexample, it could be then that the ballots are filled in in the 

following way: (A, C, D, B); (B, C, D, A) (see Figure 3.11). First notice that without 

performing any IIA-manipulations, Pareto Efficiency still holds. Next note that by 

swapping only A,B or D, we cannot forcibly change the relationship between D and 

any of the other candidates in any useful way. D is stuck below C, and since A and 

B are each stuck on top on one ballot, there is no way to move either of them below 
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either C or D. Thus, there is an example where first using any IIA-manipulation on 

a subset of {A, B,D} gets us nowhere. 

A ] FCT 

C A 

Figure 3.11: Left: counterexample for using {A, B,D} transformations. Right: counterex
ample for {A, C, D}. 

• Case 2: using {A, C, D}. Since we are not going to move the candidate C, the result 

list must have the form (A, B, _, _). The counterexample for this case is similar to the 

previous, we simply produce the ballots: (A, B, D, C); (C, B, D, A) (see Figure 3.11). 

We again have the same problem: Pareto is initially satisfied and we cannot move 

either C or D above A or B in all ballots; A and B are stuck up top in the first ballot. 

Thus, using an IIA-manipulation on {A, C, D} first won't get us anywhere. 

• 

Thus, this version of our game does differ from previous versions of Dictator: in some sit

uations not having the possibility of a dictator does not mean a successful Pareto challenge 

can be made. 

At the same time, the notion of allowing a sequence of IIA-manipulations becomes 

extremely vital, both for the reasons that it is only a sequence (and not a complete case-

analysis tree) and that the prover can use more than just a single IIA-manipulation. Indeed, 

even some completely-filled boards require multiple manipulations to find a Pareto violation. 

We demonstrate one of these boards in Figure 3.12, and show that the board requires more 

than one invokation of the IIA. 

L 3. 
c_ _c 

B A 
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Figure 3.12: We need more than one IIA-manipulation on this board to find a violation. 

Lemma 3.4.18 We cannot prove a Pareto violation in the board in Figure 3.10 using only 

one IIA-manipulation. 

Proof. 

We will prove that we need more than one IIA-manipulation to demonstrate a Pareto 

violation. To do this, we will show that neither a one-shot manipulation on a subset of 

{A, B, D} nor {A, C, D} suffices to find a violation. Note that we have not already violated 

Pareto without the help of any manipulations. 

First we will attempt to use an IIA-manipulation on a subset of {A,B,D}. Here, we 

want to somehow describe a situation in which either D > B in both ballots or D > A in 

both ballots. We cannot rely on B > A, since the result will have A and B in the same set. 

Using IIA on A, B and D, however, we cannot force D above either of the other two, as in 

the second ballot it is trapped beneath C. 

Instead, we can try a manipulation on a subset of {.A, C, D}. Here, since C and D are 

neighboring in the result, we need to create a violation by causing either C > A in both 

ballots, or D > A in both. 

Due to the first ballot, however, with A trapped directly above B, we cannot now change 

its relationship to either of the other two candidates we have chosen to use IIA with. Hence, 

we cannot force either of the two relationships with A that we would like. 

Thus, we cannot find the Pareto violation in only one step. • 

We find it valuable here to present a working sequence of IIA-manipulations to find a 
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violation for the example in Figure 3.12. We will use Figure 3.13 as a guide. 
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Figure 3.13: A sequence of IIA-manipulations leading to a Pareto violation. 

The diagrammed process uses four steps, each time operating on two candidates. The 

end result of these steps is to force D > A in all the ballots, while keeping the relationship 

A > D in the result. Our sequence of IIA-manipulations (on {̂ 4, C}, {A, D}, {A, B} and 

{̂ 4, D} respectively maintains this relationship. 

3.5 Summary 

Our method for game design here is well carried out. All three of our games went through 

major revisions with the goal of reaching a completeness result while maintaining both the 

initial character of the game as well as the ease and elegance of the rules. 
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With Atropos we have had great success. With our second real version of the game, we 

had the PS P AC E-havdness we desire as well as the basic characteristics of Sperner's lemma 

still built in. Matchmaker, on the other hand, has endured a number of revisions and a great 

deal of analysis without finding a hard version. Although the complexity of even Stubborn 

Matchmaker remains unknown, enough patterns have emerged that polynomial-time eval

uation seems very probable. Still, our design cycle has not given up on Matchmaker or its 

variants, and there is always the possibility that it will limbo with unresolved complexity 

for a while (such as with Sprouts and Chomp where analysis is on-going[2][21]). 

Dictator, while being a very young game, has already been through a few loops of the 

design cycle. We have made improvements to the game, both in the legitimacy of the proof 

structure and in the complexity of the game. It is because of these redesigns that we are 

able to phrase both of the complexity questions. 

The design process has also actually simplified the Dictator rules. Avoiding the ability 

to use candidate cases in violation proofs removes a great deal of confusion during game 

play. This little tweak to the rules has actually been a great help for the game, and it came 

about due to complexity desires. 

Thus, although this design cycle was used here without any formal game-design training, 

the results have been excellent. One of our games has produced a final variant, while the 

other two have undergone rigorous testing and are definitely in a playable state, awaiting 

either to be shown to be hard, or the next round of improvement. 
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Chapter 4 

Computat ional Complexity of 

Games 

Although we wish for our games to be easy to play, in the sense that players should know 

which moves are available to them, "better" games are often those which are a challenge 

to play well. Even though players should know how they can move, it should be difficult 

to determine how they should move on a given game board. 

We can phrase this as a computational question: Given some game, G, what is the 

"best" move we can make? Meaning, which of the children of G (say, Gi,(?2, . . . , Gfc) 

should we move to? Here, the "best" move refers to any move which will win the game for 

the current player, no matter what action the opposing player takes. 

If the number of children, k of G is polynomial in the size of G, then the hope to 

answering this question in polynomial time lies in determining whether any of the children, 

G\,... ,Gk is a losing position. In this case—all our games have a polynomial amount of 

children—we can rephrase our computational problem as, simply, "Given some game, G, is 

G in a winnable state?" 

The brute force approach to solving this problem is to simply compute the winnability 

of the children. This, in turn, leads to the computation of the grandchildren, etc. In many 

cases, this leads to an evaluation of an exponential number of descendants. Thus, we want 
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to know when a trick exists for swift evaluation of a game. In this section, we will resolve 

the computational complexity of some of our games, either by finding a trick for evaluating 

them in polynomial time, or by showing a completeness result for that game. 

4.1 Atropos 

We find the following result for Atropos: 

Theorem 4.1.1 Determining whether the current player has a winning strategy in Atropos 

is PSP ACE-complete. [5J. 

In order to show this, we need to prove both that Atropos is in PSP ACE and that it 

is PSPACE-hard. 

Lemma 4.1.2 Determining whether winning strategies exist for Atropos is in PSP ACE. 

[5j. 

Proof. 

Since the number of plays is at most the number of nodes in the gameboard, the depth 

of every branch of the game tree is linear in the size of the input. Thus, in polynomial space 

we can determine the result of following one path of the game tree. In order to search for a 

winning result, we can systematically try each possible game branch. Thus, we require only 

space enough to evaluate one branch at a time, as well as some bookkeeping to recall which 

branches we have already visited. This bookkeeping will require only 0{rn?) space, where 

m is the number of nodes on the board. Thus, in polynomial space, we can evaluate all 

the possible outcomes of the game tree until we either find a winning strategy or determine 

tha t none exists. 

• 

It remains to be shown that strategies for the Sperner Game are PSPACE-hard. 

Theorem 4.1.3 Determining whether the current player has a winning strategy in Atropos 

is PSPACE-hard. [5]. 
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Classically, we show that problems are PSPACE-haxd by reducing TQBF to them [14]. 

In general, TQBF is the problem of determining whether a quantified boolean formula— 

a formula of the form 3xi : V22 : 3^3 : VS4 : •••Qnxn : <fi(xi,X2, •. • ,xn)—is true. In 

our notation here, (f>(xi,..., xn) is a conjunctive normal form formula using the literals x\ 

through xn, while Qn is a quantifier (either V or 3). 

Because of the inherent alternation in quantified boolean formulae, many games with 

non-obvious strategies for two players have been shown to be PSPACE-h&rd [14]. Indeed, 

we see that fulfilling a QBFacronymQBFQuantified Boolean Formula is much like playing 

a game. The hero will choose a variable assignment for x\, then the adversary will choose 

for xi- The hero chooses £3 in response, and so on. 

4.1.1 Taking Hints from GEOGRAPHY 

Our reduction will model this behavior. We will create a Sperner Game state from a 

TQBF such that a winning strategy in the game exists if and only if the formula is true. 

Our reduction is inspired by the reduction of TQBF to Geography (see [14] for a clear 

description of this reduction). The game will proceed by letting the appropriate players 

make moves corresponding to the assignment of values to the variables X{. Each player will 

then make one further choice and one of the literals in one of the clauses will be selected. 

We will "investigate" the literal through its interpretation in the game state and force an 

end of the game with it. 

In our resulting game boards, most of the plays players make will be very restrictive. 

In our construction, there is a resulting "prescribed flow of play" directing players to make 

choices in the order we described above. Our reduction provides punishment strategies such 

that any player violating the prescribed flow of play will lose in a constant number of turns. 

We describe these punishment strategies, ensuring that players must follow the prescribed 

flow in order to have a chance of winning the game. 

Using our construction, each player's last choice is easily described: the adversary will 

choose a clause to investigate, and the hero will choose one of the literals in that clause. 
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That literal will be evaluated, according to the assignment it received. If the literal is true, 

the hero should win, otherwise the adversay should win. 

Prescribed Flow of Play Q 

* i 
Adversary Makes 

I I This Choice 

Clauses: @ @ . . . . @ . . . . ( Q 

Hero Makes 
This Choice 

Literals: ( * , ) • • • • (*« ) • • @ - - ( £ ) • • • • @ 

Figure 4.1: Construction Sketch: End of the Game. Clause Cj contains the literals xa, Xf,, xc. 

We give the adversary the power to pick a clause because, in the case where the formula 

is true, all the clauses must be true; the adversary cannot cheat at this point. However, if 

at least one of the clauses is false, the formula will be false, and the adversary should be 

able to pick whichever clause they want to discredit the correctness. Figure 4.1 illustrates 

the layout style we desire. 

The prescribed flow of play directs players to finally investigate a literal at the end of 

the game. The adversary picks a clause to investigate, and the hero then chooses one of 

the variables. 

Before the flow of play reaches this point, we have to have already set all of the variables. 

In order to accomplish this, the path of play must pass by each of the variable settings, 

forcing the appropriate player to make a decision at each variable. Once the settings have 

been accomplished, we can move to the investigation procedure, as portrayed in Figure 4.2. 

Overall, this plan is very reminiscient of the reduction from GEOGRAPHY. In addition, 

our topology meets some similar hurdles that must be overcome in that construction. For 

instance, our plan has a non-planar design (paths must often intersect between the selection 
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Variable Investigation Scheme 

At each of these sites, the appropriate 
player plays, setting the variable. 

Figure 4.2: Construction Sketch: Setting the Variables. The Variable Investigation Scheme 
is laid out in Figure 4.1 

of a clause and the selection of a literal during investigation). Thus, we will need to display 

widgets which allow for these logical crossovers to occur. 

Our blueprints also seem to defy the rigid structure of the gameboard we are operating 

on. We require widgets which provide pathways for our prescribed flow of play. GEOGRA

PHY is played on a directed graph, so enforcing the flow of play is somewhat more simple. 

We will need to be very careful that players cannot subjugate design plans by moving in 

unexpected directions. Also, we need widgets to handle variable assignment, path splitting, 

and other obstacles to realizing our layout on a Sperner Board. We continue by exhaustively 

describing these widgets. 

4.1.2 Reduction Widgets 

Our reduction requires widgets to enforce various moves and allow for appropriate decisions 

to be made through some moves. In addition, the widgets must be able to connect, allowing 

us to build the overlying structure by fitting them together. In this section, we describe 

each of the widgets and specify how they are used. 

Many of the widgets are simple and are only pathways to guide the flow of play. For 

more complex widgets, however, we need to be able to ensure that plays not following this 

flow correspond to trivially bad choices. This means that any player attempting to go 

against the prescribed pathway will be vulnerable to an optimal opposing winning strategy 
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which is easily computable in constant time. 

4.1.3 Paths 

Paths are the most simple of the widgets in our construction, although we have two different 

versions for different circumstances. Players should not make non-trivial decisions along 

paths, thus we build them to strongly restrict playing options. 

Figure 4.3: A Single-Symbol Path 

The first of our two versions is a path in which on any move, a player has the option of 

playing exactly one symbol without immediately losing. In Figure 4.3, assuming the flow 

of play comes in from the left, the leftmost circle can and must be filled. Then, the next 

player is forced to fill the circle to the right, and so on. This path pattern can be extended 

to any length. Turning widgets for these paths also exist as we describe later. 

Figure 4.4: A Two-Symbol Path 

The other type of path supports a chain of one of two different symbols. In this type of 

path, shown in Figure 4.4 whichever symbol is played forces the next play to follow suit. If 

a space is barred, the next play must also be bars. The same is true for filled (we assume 

again that the flow of play is going from left to right). 

This type of path is often the by-product of play leaving other widgets. Since all our 

widgets use single-symbol paths leading in, it is vital to be able to force the path to switch 

from a two-symbol path to a single-symbol path. 

Figure 4.5 shows a mechanism for this switch. The prescribed flow of play in this widget 
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Figure 4.5: A Switch from Two-Symbols to Single-Symbol 

in the diagram is again from left to right, strictly horizontal, although there are free spaces 

both above and below. Indeed, if a player deviates by playing above the horizontal line, 

there is a winning response, simply by playing further above. The same is true for playing 

below. 

The beginning pattern of the single-symbol path is clear on the right-hand side of the 

widget, and, as before, no matter which play is made approaching that pattern, a sequence 

of fill plays can and must be made. 

-QD_# 

Figure 4.6: A 60 degree turn in a One-Symbol Path. 

We must also be able to turn our paths in order to have them line up with other widgets. 

Figures 4.6 and 4.7 reveal 60-degree turning options to use while performing a reduction. 

In order to turn further than 60-degrees, we can just pair two or three of these together 

to attain 120 or 180 degree rotations. Note that in the second example (Figure 4.7) there 

are two possibilities for playing at the "elbow" of the turn. This does not affect the overall 

restriction; once further plays after the elbow must return to the original symbol. 

Unfortunately for fans of two-symbol paths, we do not bother to create turning widgets 
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Figure 4.7: Another 60 degree turn in a One-Symbol Path. 

for them. Instead, whenever we are presented with a situation where a two-symbol path 

occurs, we will immediately switch it to a one-symbol path. Thus, none of our other widgets 

will use two-symbol entrances. This does not present a problem, as only one of our widgets 

results in an out-going two-symbol path: the variable widget. The out-going paths for these 

widgets will be followed by the two-to-one symbol switch widget. 

4.1.4 Variables 

Having described these devices, we are prepared to reveal the widget for modelling variables, 

presented in Figure 4.8. 

Figure 4.8: Variable Widget 

Here the flow of play enters initially from the bottom left and exits through the lower 

right path. During this time, the "playability" of the location corresponding to some 

boolean variable X{ is determined. If that variable is investigated at the end of the game, 

then the flow of play will enter through the entrance in the upper right corner, and will 

terminate inside the widget. 

The choice of symbol played in the space directly below X{ determines the playability 
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of Xi (and corresponds to the assignment of true or false). Since the plays up to that point 

must all either be fills, or—in the case of the last space—bars, the deciding play must 

also either be a fill or bars, and can be either, independent of what the previous play was. 

Notice now that if a fill is made, the location X{ will be playable later, whereas a play of 

bars means that X{ is unplayable. 

After this choice is made, the prescribed flow of play continues rightward, which is 

clearly forced in the case that x\ is made unplayable. We now must describe a winning 

response strategy to a player deviating from the play flow, which occurs when x\ is played 

prematurely. 

Figure 4.9: A Premature Play at Xi 

Lemma 4.1.4 (Thwarting Cheaters) Prematurely playing at X{ is suboptimal. 

Proof. In order to prove this lemma, we must show a winning counter-strategy to a 

premature play in Xj. We use the numbers from Figure 4.9 to refer to play locations in this 

strategy. 

Assume that an offending player played prematurely at a^. If they have not already 

lost, then they must have either shaded or filled a;,. In either case, the winning punishment 

strategy begins by filling location 1. The offending player will have to respond by either 

a) Filling location 2. A winning response to this play consists of filling 3. Now, the 

offending player must play at the unplayable location 4. 
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b) Filling or shading location 3. The winning response to this is to fill 2. Now, the 

offending player can only play at 5, which is unplayable. 

Thus, playing at X{ prematurely is a losing strategy, and is suboptimal. 

D 

Now, assuming the players follow the prescribed flow, the parity of playable spaces in 

the upper portion of the widget is defined by the playability of x\. If X{ is investigated, then 

the flow of play will enter at the upper right from a single-symbol shading path. Notice that 

these incoming plays cause location 1 in Figure 4.9 to be unplayable. Thus, the following 

sequence of non-suicidal plays is at locations 2, 3, then—if it is playable—X{. 

Thus, if Xi is playable, a play there after 3 wins by forcing a loss at 1. Otherwise, the 

play at 3 wins, because all three neighboring spaces are unplayable. In our widget diagram, 

if Xi is playable, there are four possible plays when the widget is investigated. In the other 

case, there are only three. 

4.1.5 Splitting and Rejoining Paths 

When determining which variable to investigate, players need to be able to make choices to 

follow different paths. In turn, multiple paths must converge towards the same variable, as 

multiple clauses can contain the same literal from our instance of QSAT. Thus, we require 

widgets for splitting and rejoining paths. 

©<lDO# 
oo« 

Figure 4.10: This widget splits a path. 

The splitter shown in Figure 4.10 is extremely simple to comprehend: the flow of play 

goes from left to right. Whichever player makes the second play in the widget has the 
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ability to choose between the two paths. Assuming the first player is forced to fill the first 

circle (by using a single-symbol fill path to enter this widget) the second player can choose 

to either take the upper or lower path. Play continues through single-symbol paths. (Note 

that all plays have to remain fills, independent of which path is chosen.) 

Figure 4.11: This widget converges two paths. 

Joiner widgets are slightly more complex, as we have to protect the flow of play (again, 

left to right in Figure 4.11) and prevent a player from "going" backwards. The widget 

performs this automatically. Notice that play from the top must begin (in the widget) with 

a fill, forcing the second play to be a fill. Now, the space below is unplayable, preventing 

backtracking, and the players must continue to the right. The same phenomenon occurs 

when play enters from below: forced bars cause the upper entrance to be unplayable. Thus, 

our joiner widget "works" in the sense that it protects the flow of play from backtracking. 

4.1.6 Path Crossing 

The graph of paths in our model is not necessarily planar, meaning that we have to be able 

to handle paths which cross. Thus, we need another widget that acts as a gate, forcing a 

crossing of two seperate possible play flows. Luckily, such a widget exists, as pictured in 

Figure 4.12. 

We keep with the practice of using left-to-right play flow in Figure 4.12, except that 

here we have two different possible flows: bottom-to-top and top-to-bottom. We will follow 

one of the path flows and list the sequence of necessary and optional plays, showing that it 

"flips" sides while passing through the widget. The reader may then investigate play flow 

from the other entrance. 
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Figure 4.12: This widget crosses two paths. 

Assume play enters the lower left side from a single-symbol fill path. Then, the first 

two plays in the widget diagram must be fills, followed by either a fill or bars at the path 

intersections. Either of these plays both makes a play upwards unplayable, and forces 

the next two plays to the right to be fills. The next play must be a shading, followed 

by another shading in the intersection. Now the lower path is unplayable, and play must 

continue upwards. By verifying entrance from the upper left path, the reader will see that 

the crossover widget accomplishes its goal. 

In truth, the widget is even more robust than we describe above. As it turns out, 

threads of play may enter from any adjacent two of the four sides, and the path-crossing 

property will still hold. In our example construction in Figure 4.14, play enters from either 

of the bottom holes and exits from one of the top holes (the figure uses an upside-down 

version of the widget). 

4.1.7 Parity Switching 

Finally, in order to ensure that the correct player has the chance to play at the variable 

locations Xi during investigation, we may need to extend the lengths of some paths. For 

each different possible path from the splitters representing the choice of a variable by the 

hero inside a clause and the variable location itself, we need to measure the length of the 

path to see which player would be playing on the variable site. 

If the literal in that clause is negated, then the adversary should be set to play on the 

variable. Otherwise, it should be the hero's move that lands on the variable site. We can 
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control this by adding any necessary parity switches in the path segment between the last 

splitter and the first joiner. A parity switch widget is detailed in Figure 4.13. This device 

simply inverts the final order of play that would occur in a basic single-symbol path of the 

same lateral length. 

Figure 4.13: This widget effectively switches the order of play in a path. 

4.1.8 Sample Reduction 

Although we will soon present an algorithmic method for fitting the widgets together, we 

first provide a sample QSAT instance and equivalent Atropos board that will all fit on 

one page. Although many readers will be satisfied with this example, those who are still 

concerned about the validity of the reduction can continue after this section. 

We steal our example QSAT instance from a GEOGRAPHY example of Papadimitriou's 

[14]: 3x-.yy-.3z: [(x V y) A (y V z) A (y V ~z)\. Although this example contains only two 

literals per clause, the construction utilizes all of our widgets and correctly portrays the 

ease with which they fit together. 

In Figure 4.14, we have assembled the board using our widgets. We use S to denote 

the starting position (we assume that the adversary last colored the circle directly to the 

left of the S and that no other uncolored nodes are adjacent to that circle). Some of the 

other nodes have also been marked to show their correspondence to the formula. Each of 

the variables x, y and z are noted in the figure, as well as the clauses c\ = x V y, C2 = y V z 

and cz — y V z. The Cj's indicate locations where the hero will choose between one of the 

literals in that clause. In addition, we have marked the split A where the adversary makes 

their first choice between clauses. If they wish to investigate c\ or C2, then they must take 

the upper path. Otherwise, choosing the lower path will lead directly to C3. 

http://3x-.yy-.3z


www.manaraa.com

44 

^^^4IQQQQQQQ8Q8Q8QQQ0Q9Q9^ 

(E)0#00##0# OCDOOO 

CBQ©J&g#J&©I2# JBQ#<D>(n>̂ DJL 3MD3 

CDQ©J© JIQP©<0> JIQQQSQP +J?M. 
JtPJ> JIQlP JiQ£i>©<H£ f i ^ L 

•OO 0 # <D©0<D> <ti)09 #OOO0 #0<D # 0 0 
©©OOF ©0# • 0 0 0 # •OOD © © © © © • • ® 0 # © # < I D 0 # 

^•QQQQPi5QQQPC^(D><D>©aQ#(II><D)«# JIQ© 
•0O®(ID(IDQQQ«(ID(ID«» J|p© © © • 
© • • JIQP QQ^ © • 

© • 

Figure 4.14: Atropos board equivalent to 3a; : Vy : 3z : [(# V y) A (y V z) A (y V z)] 

The attentive reader can count spaces to see that the hero will choose to set x and z 

and will get to choose between literals at each clause. The adversary gets to set y as well 

as choose between clauses. Furthermore, after each literal is chosen from each clause, the 

reader can count to see that the adversary is scheduled to play on the variables when they 

are negated in the appropriate clause, while the hero is scheduled to play on them when 

they remain un-negated. 

Demonstrating that this is indeed a legal game state, Figure 4.15 shows the holes of 

our diagram filled in. Recalling earlier discussion, these holes must each simply contain a 

hexagon of seven colored circles connected to the border. We go a bit further here, and 

simply fill in the holes, aside from some doomed circles. 

Having removed all unnecessary notation from the game board, we must just imagine 

that this structure exists within our Sperner triangle. Thus, we must only implant our 

construction within a large-enough initial board. 
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Figure 4.15: Filling in Holes Between the Widgets. We also remove the unnecessary notation 
from the nodes (S is still the start node, and must be denoted). 

4.1.9 Some Additional Concerns 

We have described all our widgets, as well as given mechanisms for them to all fit together. 

The wary reader may have additional concerns, however. The most obvious of these is 

fitting our construction inside an actual game board. We have built a very oddly-shaped 

monstrosity, nowhere near the form of the triangle that is the initial board configuration. 

This is an easy obstacle to overcome, however: we can simply draw a large triangle around 

our game board. We can color as many circles as necessary outside our structure, so long 

as we don't create a bad triangle. 

Slightly more troublesome, we need to assert that "islands" inside the structure could 

exist. These islands, consisting of colored circles surrounded by a connected shell of uncol-

ored circles, can exist in a legal game board: they must simply have been the product of 

jumps. At some point before we reach the current game state, one of the players must have 

chosen to start coloring circles of that island. Then, the chain of plays must have created 

a place where another player was allowed to jump outside of that island. 
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Ensuring that jumps outside could have occured is simply a problem of designing large-

enough islands. We need to make sure that whenever a jump outside is needed, there must 

be a place where no neighboring moves were possible. In the simplest case, this requires a 

hexagonal structure of 7 circles, all of which are colored. 

4.1.10 Algori thmic Reduct ion: P u t t i n g the Pieces Together 

We have the pieces, but now we need to show how to put them together efficiently. Although 

many readers might believe at this point that a reduction exists which can be computed in 

polynomial time using the widgets shown, we prefer to give an explicit construction for the 

entire board. This will complete the proof of PSPACE-completeness for Atropos. 

Lemma 4.1.5 We can create an equivalent Atropos board in 0(n2) time, where n is the 

number of literals in the given QSAT formula. 

Figure 4.16: An empty hex tile. The border of the tile will overlap with neighboring tiles. 

Proof. 

In order to do this, we will need to put our widgets inside hexagonal tiles (see the empty 

tile in Figure 4.16) and piece those tiles together into a game board. The borders of each 

tile (between the lines in Figure 4.16) can overlap with any neighboring tile; patterns along 

each edge have been standardized so that we don't have to worry about making sure they 

match. Also, the design of each tile has been laid out so that each piece can be individually 
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created via a sequence of plays, with or without needing to account for the border. Each 

side of the structure in each separate tile can be built with a series of plays which ends 

in a location completely surrounded by colored circles and thus each tile can be created 

independent of the tiles around it. 

We will build our tile structure in layers, in order to correctly sort out the widgets and 

paths between them. The trickiest of these steps is actually the arrangement of paths from 

literals to the variable widgets. This takes two steps: first the sorting of those literals, then 

the combining of the same literal paths into one variable widget. 

In order to do this, we will use a structure that is reminiscent of a parallel bubble-

sort. At each step, we'll compare two neighboring literals, and if they're out of order, we'll 

switch them. In each of these steps, there will be two rounds, first to compare the 2kth and 

(2k + l)th elements, then next to compare the (2k + l)th and (2k + 2)th. 

If the two literals need to be switched, then we switch them by having the proper tile 

contain a crossover widget (see Figure 4.12 for the widget and Figure 4.17 for the tile). 

Otherwise, if we don't need to switch, then the tile will just have two non-intersecting 

paths (see Figure 4.18). 

Each step in our sorting procedure requires four rows of hexagons: two rows of potential 

crossovers and two more rows between them and the next step. 

Once the literals are sorted, we need to use the joiner widget to bring paths that 

represent the same variable back together. Again, we use a hexagonal tiling to connect 

these paths. Figures 4.19 and 4.20 portray these joiner hexagons, which differ only in the 

direction they exit at the bottom. In the worst case (all literals are instances of the same 

variable), we will need 0(n) rows of tiles to join all these paths. Each of the tiles in this 

section have a height of 13. 

After the joining, we have each of the variable paths lead into a variable widget. Un

surprisingly, we have installed each of the widgets also into hexagons, each of height 17, 

as shown in Figure 4.21. This adds only one more row onto the bottom of the hexagonal 

structure. 
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Figure 4.17: Two paths come in from the top, cross paths, and exit through the bottom. 

Now we look backwards, building the separator branches that lead into the sorting 

section. We again use hexagons to systematically hold our separator widgets; this time 

each hexagon is 10 circles high, as shown in Figure 4.22. In our construction, we need at 

most 0(n) rows in the splitting section, since in each hexagon, a path either splits or just 

moves right or left. Thus, in order to reach the left-most literal, we can use n — 1 splitting 

hexagons, each on a different row to create our tree in this section. 

Finally, we just need to connect the right-most exit of our variable row with the entrance 

to the splitting section. We can do this by simply building a path from the bottom of the 

structure to the top. With this, our gameboard is nearly complete. The only problem left 

is that this is not a legal Atropos state; we need our board to be a descendant of an original 

board. Thus, we embed our structure into a just-large-enough triangle with the starting 

border configuration. 



www.manaraa.com

49 

°8* 
oxo 
oxo oxo oxo 
080 

pSstoSoxo! 
0»foXO 
oSfoXoXof 
oSoxoxoj 
ofoxoxoj 
0$PrPpPl oSoxoxoj o9go8o8o 

oiosK>xo»iasn dPXO 

O 

PWO 
bwo 
PSfoxo bSfoxo 
qSpgo 

ozoxommo w 
'<D)XO '<n>xcr 

Figure 4.18: These paths don't need to cross and thus just go straight down. 

The size of this now depends on the size of our structure. If, in our QBF we had n 

literals, then the width of our structure was n + 1 hexagons of circles (the last hexagon 

contains the path connecting variable widgets to the splitting widgets). Each hexagon has 

width 17, so the total width is 17(n + 1) circles. 

The height of the structure consists of four parts. On top, the splitting section consists 

of n rows of hexagons, each of height 10. There are n — 1 splitting hexagons, plus an nth 

to connect to the path leading from the variable widgets. In total, the splitting section 

contributes lOn rows of circles. 

Below these splitters is the sorting section which orders the different paths depending 

on the variable number of each path's literal. This section mimics a Bubblesort process 

run in parallel on n processors. In each step of the process, we compare each literal with 

literals to the right and left, switching them if necessary, using 4 rows of hexagons, each of 

height 17. In the worst case, the literal which starts on the far right will need to move all 
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Figure 4.19: This tile joins two paths from above and exits to the right. 

the way to the far left (or vice versa) and will only switch once per round. Thus, we need 

at most n — 1 rounds of the process, or 4(n — 1) rows of hexagons in this section, meaning 

68(n — 1) rows of circles. 

In the next layer, consisting of joining widgets, in the worst case we need to recombine 

all paths back to one variable (if all literals refer to the same variable) which requires n — 1 

rows of hexagons, each 13 circles high. Thus this section uses 13(n — 1) rows of circles. 

The final layer only needs one row, as it just contains all the variable widgets connected 

together. Each of these hexagons is also 17 circles high, so only 17 rows of circles are 

contributed by the variables. 

Our structure now has a width of 17(n +1) = 0(ri) circles and a height of lOn + 68(n — 

1) + 13(n — 1) + 17 = 0(n) circles. In order to fit this into a triangular Atropos board, we 

would require a board with 0(n2) circles. 

Thus, the size of the game board is a polynomial in the number of literals in the QBF 

and the reduction can be completed in 0(n2) time. 

D 
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Figure 4.20: This tile joins two paths from above and exits to the left. 

This completes our proof of PS P AC E-hardness. 

Corollary 4.1.6 (Atropos is PSPAC^-complete.) The problem, ATROPOS, of de

termining whether the current player has a winning strategy is P SPACE-complete. 

Proof. By Lemma 4.1.2 and Theorem 4.1.3, Atropos is both solvable in PSPACE and 

PSPACE-hard. Thus, Atropos is PS P AC E-complete. • 

4.2 Unrestricted Atropos 

The movement restriction in Atropos is the property that appears to make this game ac

tually difficult to strategize for. For most game configurations, it is a simple matter of 

determining the parity of uncolored circles to determine who will win. From the start

ing board configuration, the winning player has to put forth some effort to prevent their 

opponent from "flipping" this parity, but this is intuitively not difficult to regulate. 

At the end of an Unrestricted Atropos game, we reach a state where a play at any 

uncolored circle on the board will create a three-colored triangle. Almost always, any of 
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Figure 4.21: This tile contains a variable widget. 

these plays will create an odd number of bad triangles; only a few configurations result 

in plays creating an even number (greater than zero) of them (see Figure 4.23). This has 

a vital impact on the winnability of Unrestricted Atropos due to the following important 

facet of Sperner's Lemma. 

Not only does the lemma state that there will be at least one three-colored triangle in 

a fully-colored Sperner Triangle, but that there will be an odd number of them. Thus, if 

we don't end up with any of these parity switch regions by the end of the game, there will 

always be an odd number of uncolored circles just before the losing player makes their last 

move. Assuming either player can prevent these regions from occuring, the next player can 

win if there are currently an even number of uncolored circles. This parity changes with 

each switch region added to the board. We begin to argue that it is easy to prevent these 

regions from being created and relate this to playing this game from the starting position. 
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Figure 4.22: In this splitter tile, one path splits into two. 
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Figure 4.23: Basic parity "switches". A play in either of these will create an even number 
of bad triangles. We refer to these as A-Switches. 

We will first show all regions which must result in an even number of bad triangles (we 

will refer to these as "parity switches") then give some intuition for the fragility of these 

regions. 

Although the two regions described in Figure 4.23 (A-Switches) are the smallest possible 

regions "worth" an even number of bad triangles, other larger regions will result in the 

creation of one of these two. We describe these pictorally, but using additional symbols. 

The "null" symbol (see Figure 4.24) means that no color can be played at that circle without 

causing the game to end. The "box" symbol (see Figure 4.24) with one of the three colors 

means that while that circle is uncolored, the only non-losing play at that circle is the color 

inside the box (due to neighboring circles not in the diagram) and either all neighboring 
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circles not in the diagram are already colored or no non-losing play at any of those circles 

can remove the playability of the color in the box. 

§) QD 

Figure 4.24: New Symbols for parity switch diagrams. On the left, the circle does not have 
any safe colors available. On the right, the circle can only be colored with bars. 

As an example, we look at the B-Switches, shown in Figure 4.25. In the example 

structure on the right, the two open circles coorespond to the two "symbolled" circles on 

the left. The top circle has no safe plays. Meanwhile, the bottom circle has only one safe 

play—bars—and the only play which could change the playability of bars (rilling or shading 

the top circle) is a losing play. 

Ms 
w «SP 

Figure 4.25: B-Switch. On the left is the general form. The right figure is a diagram of an 
example B-Switch. 

We continue by diagraming the remaining switch regions. All these regions (including B-

switches) are found by "backtracking" possible moves from the A-Switches, then taking the 

structures which still enforce the switch. C-Switches are shown in Figure 4.26, D-Switches 

in Figure 4.27 and E-Switches in Figure 4.28. 

We next note that no other structures are parity switches. This can be shown by 

backtracking further on the switch regions. Any parent of one of the above structures 

either gives us another already-listed parity switch or is no longer a switch. 

The concept behind preventing parity switches, then, is to detect them at least one 
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Figure 4.26: C-Switch. On the left is the general form. The right figure is a diagram of an 
example C-Switch. 
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Figure 4.27: D-Switch. On the left is the general form. The right figure is a diagram of an 
example D-Switch. 

move before they occur and make a play to break their structure. (Since most of them 

require different symbols next to each other, this is usually accomplished by painting a 

circle the same color as it's neighbor which is a part of a potential parity switch.) By the 

definition of a parity switch, any region which is not yet a parity switch but is threatening 

to become one can be "blocked" in just one move (otherwise it would already be a switch). 

Thus, any single switch can be prevented just one move ahead of time. Unfortunately, 

multiple near-switches may be neighbors, so one play (by the player hoping to set up a 

switch) could influence both regions. More specifically, that play could push both potential 

switch regions into a state where each was only one play away from becoming an actual 

switch. In this way, the player trying to create a switch might be able to pull that off; the 

other player can now only prevent one of the regions from realizing itself. 
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Figure 4.28: E-Switch. On the left is the general form. The right figure is a diagram of an 
example E-Switch. 

Due to the nature of the board, it seems more likely that potential switches need to 

be recognized at least three moves before they complete. This results from the hexagonal 

structure of the Atropos board; each circle has six neighbors and thus any one play could 

influence up to three different threatening switch regions. We conjecture that this is good 

enough for one player to prevent switches from occurring from the starting position. 

Conjecture 4.2.1 (Initial Unrestricted Atropos is easy) The player who would not 

play in the last uncolored circle if the entire board were to be filled has a winning strategy 

for Unrestricted Atroppos from the starting configuration. 

We see the following potential method for this proof by showing two separate things. 

First, prove that we can identify parity switches at least three moves in advance. Then, 

just show that this is adequate to preventing neighboring "four-move-away" switch regions 

from becoming completed switch regions. 

Not starting from the initial configuration, we mention that there are some configura

tions which we do not know how to efficiently evaluate. Long strands of interconnected 

potential switch regions can form very complicated game goards where the attention is 

now paid to the parity of the number of these almost-switches. Players must be mindful of 

which plays can strengthen or destroy multiple of these regions. In this way, the dependence 

between neighboring regions can resemble situations from the game Kayles. 

Kayles is a game played on an unweighted graph where each turn the current player 
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chooses a node, v, then removes v and all direct neighbors of v from the graph. The game 

continues until the last vertices in the graph have been removed; the player who makes this 

final move wins. This game is known to be P^P^CE-complete in general [18], but the 

complexity is not known for more structured versions. Even Kayles on extremely structured 

graphs, such as star graphs[8], is not yet known. 

Due to the planar board structure of any version of Atropos, it seems that a reduction to 

Kayles would result in planar graphs, but even this would not directly solve the complexity; 

at the time of this writing there is no efficient solution for planar Kayles. 

Alternatively, a polynomial-time strategy from the initial position seems more likely; 

perhaps an algorithm could be designed which protects the parity of the board by destroying 

any potential switch region before they can grow and develop such interdependencies. 

4.3 Full Matchmaker 

Prom the previous section, we defined Pull Matchmaker to be the matching game where 

the starting position can be any complete matching on the candidates. We will now show 

how to determine who will win this game, independent of the choices for moves that they 

make. 

First, for any matching, M on { l , . . . , n } , we refer to two pairs, (a,b),(x,y) € M as 

being crossed if (a < x and y < b) or (x < a and b < y). Notice that it is always a legal 

move to uncross these edges, by proposing either (a, y) or (x, b), depending on which two 

are the more preferred candidates. We refer to such a move as an uncrossing move. 

We need the following lemma: 

Lemma 4.3.1 (Uncrossing Lemma) On an fully-matched board, an uncrossing move 

will always remove an odd number of crosses from the board. 

Proof. Let the two edges we are considering be (wa, e^) and (iw&, ea) (without loss of 

generality, we can assume wa < Wb and ea < e&). Let M be the matching which contains 

them both. Thus, we want to show that the move from proposing the pair (wa, ea) removes 
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an odd number of crosses from the board. The edges (wa,ea) and (wb,eb) will replace the 

crossed pairs to create M'. 

To prove this, we will show that any other edge (w, e) crosses (wa, ej>) and (wb, ea) with 

the same parity (odd or even number of times) as it crosses (wa,ea) and (u;j„e&). Thus, 

the other edges do not affect the total crossing parity, and only the uncrossing of the two 

edges changes this by 1. We will look at cases for (w, e) E M. 

We have three cases: w < wa, wa < w < w\, and Wf, < w. 

Case 1: w < wa. We have three subcases: e < ea, ea < e < e^ and e& < e. 

Subcase 1.1: e < ea. Here, (w,e) doesn't cross any of the edges in question. The total 

change will be 0. 

Subcase 1.2: ea < e < e&. Now, (w,e) crosses (wb,ea) in M and (wa,ea) in M'. The 

total change is also 0. 

Subcase 1.3: e^ < e. Here, (w,e) crosses both (wa,eb) and (wb,ea) in M along with 

(wa, £a) and (wb, eft) in M. Again, the total change is 0. 

Case 2: wa < w < Wb- Again, we have three subcases: e < ea, ea < e < eb and e& < e. 

Subcase 2.1: e < ea. This case is equivalent to subcase 1.2. The total change is 0. 

Subcase 2.2: ea < e < eb- In this case, (w, e) crosses both (wa,eb) and (wb,ea) in M, 

but neither of the two edges in question in M'. Thus, the change is 2, and the change in 

parity is 0. 

Subcase 2.3: eb < e. This case is equivalent to subcase 1.2. The total change is 0. 

Case 3: Wb < w. The subcases here follow the same as in case 1. The total parity 

change is still always 0. 

Thus, an uncrossing move always removes an odd number of crosses from the board. 

Note that this proof does not depend on the fact that the board is full; we will use this fact 

later on with partial matchings. • 

Since the stable situation has an even number of crosses (zero, to be exact), and this 

position is a loss for the next player, all positions with an even number of crosses are a loss 
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for the next player. Thus, to determine if the next player wins, one simply must count the 

number of crosses in the current matching. 

Corollary 4.3.2 The nimber of all Full Matchmaker game is always either 0 or 1 and is 

equivalent to the parity of the number of crossed pairs. 

Proof. The terminal Pull Matchmaker game (which has nimber 0) has no crossed pairs. 

Thus, any parent of this game must have an odd number of crossed pairs and also have 

nimber 1. By induction, we can extend this to prove the claim. • 

4.4 Basic Dictator 

It turns out that it is simple to figure out who is winning a game of Basic Dictator. This 

realization is based on the following lemma: 

Lemma 4.4.1 The function F (which must satisfy IIA) associated with a game board vi

olates Pareto if and only if no dictator can exist in the board. 

Proof. 

We will prove this by proving both directions of our if and only if statement. 

H 
This direction is trivial using Arrow's Theorem: if no dictator can exist in the board, 

then Arrow's Theorem states that a function, F, which satisfies IIA cannot also satisfy 

Pareto. 

H 
We will prove this direction by proving the contrapositive: as long as a dictator could 

still exist in a partial board, Pareto and IIA are satisfied. Thus, assume we have a partially-

filled board B, in which a dictator could still exist. We must show that there exists a social 

choice function F which satisfies IIA and Pareto and which is consistent with B. 

Let B' be a completely-filled descendant of B with exactly one dictator. Let that 

dictator be the ith ballot on the board. Then, we choose our social choice function, F, to 
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be the dictator function which simply returns the list equivalent to ballot i. By our choice 

of the dictator, F is consistent with B' and thus the ancestor B. Also, since F is a dictator 

funciton, it satisfies both Pareto and IIA. • 

Using this lemma, players can easily determine exactly when someone has made a 

"violating" play. This occurs either when a dictator is created or no dictator can be 

created. Thus, as play proceeds, players must be mindful of only two objectives: do not 

create a dictator, but do not rule one out (see Figure 4.29). As ballots are filled in, possible 

locations for dictators will be removed until the final ballot is completed, revealing the 

dictator. Thus, when played optimally, the game will end when the last slot is filled on the 

board, and players need only count the number of plays possible on the board to determine 

who will win. Even when multiple dictators are possible, all others will be "removed" until 

only one remains (see Figure 4.30). 

Figure 4.29: In a Basic Dictator game. Only the third ballot could be the dictator. Thus, 
players must avoid playing in that ballot as long as possible. Any play there will either 
create the dictator or make the dictator impossible, violating Pareto. 

Corollary 4.4.2 (Basic Dictator is in P) Determining which player wins a game of 

Basic Dictator is in P. 

Proof. Assuming all players play optimally, the last play will be the losing play. Thus, 

a player need only count the number of plays remaining. If F takes x ballots, and uses y 

candidates, and z slots have already been filled on the board, then the next player will win 
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Figure 4.30: Near the end of a Basic Dictator game. Both of the unfilled ballots have the 
potential to be a dictator. The next player must choose one of them and play so that the 
ballot is not a dictator. The other player will then lose by either creating the Dictator or 
violating IIA and Pareto. Even though there are potentially more than one Dictator, this 
does not change the parity of the outcome. 

exactly when x(y — 1) — z is even. This is exactly the number of remaining plays on the 

board. • 

4.5 Dictator 

Dictator has a dual-threat of interesting properties as far as the complexity of the game 

is concerned. There are two main questions we can ask about the difficulty of playing a 

game of Dictator. The most obvious, as studied in games throughout this thesis, is, "How 

difficult is it to determine whether the current player has a strategy to win the game?" 

This problem is in PSPACE and has the potential of being PSPACE-complete. 

The second question is, given a Dictator game state, "can the current player successfully 

show a Pareto violation this turn?" In practice (at least, the practice we've seen so far) 

games are often lost when a player does not see a challenge they could have made on their 

turn. Once more ballots are filled up on the board, it becomes easier to see where violations 

could exist and is thus costly when players don't see a viable proof. We now show that 

answering this problem is in NPacronymNPNondeterministic Polynomial time. 

Lemma 4.5.1 Determining whether a proof of a Pareto violation exists on a Dictator board 
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is in NP 

Proof. Assume we have a Dictator board on n candidates with m ballots. In our sequence 

of IIA-manipulations we may need, in the worst case (time-wise), to completely rearrange 

each ballot. Since each ballot has n entries this would require 0(n2) time to rearrange. 

Since we have m ballots, the total time is 0(mn2). 

Note that there is no need to perform a more roundabout reshuffling of the ballots other 

than a straight-forward reordering. Any extra back-and-forth shuffling steps will not add 

to the proof and may only be detrimental to the ordering in the board's result. • 

Although we have not yet proven a completeness result for this problem either, Dictator 

now has the potential to provide two difficult problems in one game. It would be excellent 

to try to solve an A^P-complete problem to determine whether to play and a PSPACE-

complete problem to determine how to play! 

4.6 Other Game Complexities 

We note that we have not listed all of the games mentioned in the previous chapter. For 

many of the variants, we do not yet have results. We will spend the next chapter discussing 

using computer programs to attempt to solve some complexity issues. Even still, some 

games remain unanalyzed. We list and discuss open problems and remaining questions in 

Chapter 9. 
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Programming to Solve Games 

5.1 Nimbers for Impartial Games 

Already, we can use the children of a game to recursively determine whether that game 

has a winning strategy. G has a winning strategy (rather, G is winnable) exactly when 

there is a child, G', of G which does not have a winning strategy (C is unwinnable). 

For impartial games, we can use Sprague-Grundy evaluation (see Definitions 2.1.4 through 

2.1.6) to determine whether any children are unwinnable. To do this, we just test whether 

the nimber of a game is zero. 

From the recursive definition of G, we can classify the winnability of games using their 

nimbers. Indeed, G has a winning strategy if and only if G(G) > 0. Moreover, this allows 

us to analyze composite games. That is, if we have two different game states, G and H, we 

denote G + H to be the composite game, which has children: \G' + H\G' is a child of G} U 

{G + H'\H' is a child of H}. This definition simply means that each turn, a player may 

choose to make one of the legal moves in one of the boards. The famous result here is 

that Q{G + H) = G(G) © Q{H) [20][12][4] (where © is the bit-wise xor operator). Nimbers 

allow us to find the nimber (and thus the winnability) of composite games, where only 

the winnability would not. For example, if we know Q{G) = 5 and G(H) = 3, then 

G[G + H) = 5 © 3 = 4, so G + H is still winnable. Also, if we know that G is unwinnable, 
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then G + H is winnable if and only if H is winnable, as G(G + H) = Q(G) © G(H) = G(H). 

On the other hand, if we only know that both G and H are winnable, we don't actually 

know whether G + H is winnable! (The nimbers of both could be the same, in which case 

G + H is not winnable.) 

In order to evaluate games for nimbers, we build a simple Java framework to encap

sulate the notion of impartial games in an ImpartialGame class. Along with this, we 

developed a "Nimberator" class to recursively determine the nimber of any ImpartialGame-

implementing object. This source code is available online1. Unfortunately, this definition-

based approach requires an amount of resources exponential in the size of the game board 

to carry out the computation. 

In the following sections, most of our analysis will not just be on whether we can 

determine the winnability of games, but whether we can determine the nimber of games. 

5.2 Atropos 

For many combinatoric games, determining the winner from starting a starting position is 

an often-considered task, even if the game is hard in general. For some impartial games, 

there is often a simple trick towards proving this initial-playing result. In Chomp, for 

example, a strategy-stealing argument shows that the first player always has a winning 

strategy [9]. This result is entirely non-constructive, however; the theorem does not reveal 

a winning strategy or even a good first move. Instead, there is a special move from that 

initial play which has all the same other children (not itself) as the initial move. Thus, if 

none of those other children are unwinnable, that special child must be, as it will have no 

unwinnable children. 

For many other games, it is unknown whether such a trick exists. Often, however, 

a pattern of winnability emerges as the size of the initial board changes. For the game 

Sprouts (a popular game in the Netherlands) extensive testing has supported a widely-

1These Java classes can be found at: http://cs-people.bu.edu/paithan/thesis/code/java/impartialgames/ 

http://cs-people.bu.edu/paithan/thesis/code/java/impartialgames/
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believed pattern. For an initial board of size n, the first player has a winning strategy 

exactly when 3 < n(mod 6) < 5[13]. The misere version of this game has been studied for 

sizes up to 16, with results announced as recent as January 8, 2009[15]. 

After first examinations, Atropos seems to have a similar pattern from initial positions. 

When we mention the size of an initial Atropos board, we are refering to the number of 

uncolored circles along each side. Thus, for size 1, there is one uncolored circle along each 

side. In this board, there is only one open circle on the entire board; thus the first play 

must create a bad triangle. For size 1, the first player loses. 

The initial board of size 2 (3 open circles) has the same result. The first player can play 

in any of the three corners, and the second player will also be able to play safely in another. 

The first player will then have to play last, losing again. For size 2, the first player also 

loses. 

For size 3, the first player suddenly has a winning strategy! There is a strategy which 

forces the game to last until there is only one open circle left. The second player must play 

there, and will then lose. So far, in these three scenarios, the loser is forced to play in the 

last remaining circle on the board. 

Since the number of circles in an initial board of size n is n ^ ' , we can easily determine 

who wins the game if the entire board is filled up during play. For exactly 1 < n(mod 4) < 2, 

the second player wins if the entire board is filled. If, from the starting position, either 

player can force this situation to occur, then this relationship tells us exactly who will win 

the game. 

We explore this relationship by testing Atropos from starting sizes. These tests are 

done by running code (available online2) to play out entire game trees from starting config

urations. Using fortran code, we compute the following results: the first player wins games 

of size 3, 4 and 7, while the second player wins games of sizes 5 and 6. We hope to improve 

the code to perform further tests on larger games. So far, however, the pattern seems to 

hold. Thus, we make the following conjecture. 

2The Atropos fortran code is available at: http://cs-people.bu.edu/paithan/thesis/code/fortran/ . 

http://cs-people.bu.edu/paithan/thesis/code/fortran/
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Conjecture 5.2.1 (Atropos Conjecture) On a starting Atropos board of size n, the first 

player has a winning strategy exactly when n[mod 4) = 0 or n(mod 4) = 3. 

Any solution to this question would be remarkable, as currently the strategy-stealing 

argument is the most common method for understanding these relationships and it doesn't 

seem like this principle can be applied to Atropos. In Sprouts, even though the winnability 

pattern has been shown up through a starting size of 32 (with some other boards up to 

size 47 proven) a proof is still seemingly out of reach. Luckily, with Atropos, we have a 

relationship to filling up all the open circles. It may prove useful, then, to consider the 

following conjecture. 

Conjecture 5.2.2 From a starting Atropos board, either player can enforce that the game 

will end by playing at the last open circle. 

5.3 Stubborn Matchmaker 

Unlike Atropos, adding a restriction to Matchmaker to create Stubborn Matchmaker sim

plifies the analysis of game states. Whereas in Unrestricted Atropos, it is reasonably easy 

to determine which of the potential moves is good, the same is not as abundantly clear in 

Matchmaker. Reducing the number of choices serves to limit the number of options each 

player has to look at and search. 

Although this has simplified the analysis thus far, we still have not been able to fully 

solve this game. In this section we describe our findings, most of which require the following 

two conjectures: 

Conjecture 5.3.1 (Uncrossing Effect) / / matching M' is derived from M simply by 

making one uncrossing move, then Q(M') = Q{M) © 1. 

The second conjecture (see Figure 5.1) relates two different matchings: M and a similar 

match, but with two neighboring edges added, which we call M(i,j). Formally, Vi,j € 

{!,..., \M\}: 
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(D- -CD d>- -<D 
0 0 
(D- -® 
®— © 

Figure 5.1: We conjecture: the nimber of the left game is equal to the nimber of the right 
game ©1. 

M(i,j)= {(i,j),(i + l,j + l)}U 

{(a,b)\(a,b) E M A a < i,b < j } l 

{(a,b + 2)|(a,b) G MAa<i,b> 

{(a + 2,6) | (a, b) 6 M Aa>i,b < 

{(a + 2, b + 2)|(o, 6) € M A a > i, 

See Figure 5.2 for a visual description. 

® © 

Figure 5.2: Left: a matching, M. Right: M(3, 5). We conjecture that the nimbers for these 
boards are the same. 

Conjecture 5.3.2 (Neighbor Pairs) For two matchings, M andM(i,j) described above, 

g(M) = g(M(i,j)). 

Assuming these two conjectures hold, we are able to perform some transformations on 

b>j} 
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the game board without affecting its nimber. First we will show how to perform operations 

we refer to as "un-Z-ing" and "Z-ing": For any matching M and a,i,j,z where a < i and 

j < z which contains the following three edges: (a,j — 1), (i,j), {i + 1, z), 

M u n - Z ( ^ ' ) = { ( a , * - 2 ) } U 

{(x,y)\(x,y) eMAx<iAy<j-l}U . 

{(x-2,y)\(x,y) € MAx>i + lAy<j-l}U 

{{x,y-2)\{x,y)eM Ax<iAy> j}\J 

{(x-2,y-2)\(x,y) e M Ax > i + l Ay > j) 

See Figure 5.3 for a visual example. 

( D - - ( D ( D - -<D 
<D- -CD 
< D - ^ - ( D 
<Sh ^ \ -® 
®- ^—<§) 

Figure 5.3: Left: a matching, M. Right: Mun_2(5,3). We conjecture that the nimbers for 
these boards are the same. 

Lemma 5.3.3 (un-Z) For any matching M and a,i,j,z where a < i and j < z, if M 

contains (a,j — l),(i,j) and (i + l,z), then the previous two conjectures imply Q(M) = 

Q(Mun_z(i,j)), 

Proof. Assume we have a matching M and a, i, j , z where a < i and j < z and (a, j — 

1), (i,j), (i + l,z) € M. Notice that the Uncrossing Effect (the first of our two conjectures) 

works also for crossing edges, since the operation of xor-ing by 1 is its own inverse. Thus, 

if we replace the edges (o,j — 1) and (i,j) with (a,j) and (i, j — 1), this crosses those 

edges and the nimber of this game is also Q{M) © 1. Now, we have a matching with 

the two edges (a, j) and (i + l,z). Crossing these two edges, we replace them with the 
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two edges (a, z) and (i + l , j ) . Let this new matching be N. Then the nimber of N is 

G(N) = £(M) © 1 ® 1 = Q{M). 

This new configuration has the two edges (i,j — 1) and (i + 1, j). Thus, there is some 

matching P where N = P(i,j — 1). By our Neighbor Pairs conjecture, G(N) = G(P(i,j — 

1)) = 9{P)- After removing those two edges from P(i,j — 1) to P, we are left with the 

edge (a, z — 2); P is exactly the matching Mun_2i(i,j). Thus, J-/(Mun_2(«,j)) = G{P) = 

^ ( P ( i , j - l ) ) = a(JV) = e(M). D 

With the ability to use these Z's, we now discover the ability to shift two neighboring 

connected candidates either up or down without changing the game's value. More formally, 

for any matching M and an a where 3(a, i), (a + 1, j) € M, 

M w e s t ( a ) = {(M),(2,J)}U 

{ ( x , y ) | ( j ; , i ; ) 6 M A x > a + l } U 

{(x + 2, y)\(x, y) € M A x < a} 

Lemma 5.3.4 (Shifting) Assuming the previous two conjectures, if 3(a, i), (a + l , j ) € 

matching M, then G{M) = £(M^ e s i (a ) ) . 

Proof. Assume we have matching M with edges (a,i) and (a + 1, j ) . Consider the 

matching M(l,i). Using the Neighbor Pairs conjecture, G(M(l,i)) = G(M). Additionally, 

this new matching contains the following edges: (2,2 + 1), (a,i + 2) and (a + l,j) which form 

a Z. Applying the Un-Z lemma, we find that £([M(l,«)]u n_ z (a,i + 2)) = G(M(l,i)). After 

this Un-Z step, the remaining matching is exactly M's^(a). Thus, G(M) = ^(M(l , i ) ) = 

a ( [ M ( l , i ) ] u n . z ( a , i + 2)) = a ( M ; e s t ( a ) ) . D 

With this last lemma in place, we see we can categorize boards in the following way. 

We say that a board belongs to class (x, y, z) if the number of unmatched candidates in 

West (the same for East) is x, while y equals the number of matched candidates i in West 

where i — 1 and i + 1 also in West are both candidates and both unmatched, and z is the 

same as y, but for East instead of West. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

(0,0) 
1 
2 
0 
1 
3 
0 
2 • 
0 
2 
0 
2 
0 
2 
0 

(0,D 
X 
2 
0 
2 
4 

0,1,6 
2,3,4 

0 
2 
0 
2 
0 
2 

(1,1) 
X 
2 
0 
2 
4 
6 
4 

0,1,6 
2,3,4 
0,1,6 
2,3,4 

0 
2 

(0,2) 
X 
X 
0 
2 
0 

0,1,2 
2,3,4 

0 
2 
0 
2 
0 

(1,2) 
X 
X 
0 
2 
0 
2 
4 

0,1,6 
2,3,4 
0,1,6 
2,3,4 

0 

(2,2) 
X 
X 
0 
2 
0 
2 
0 

0,1,2 
0,2,3,4 
0,1,2,6 

2,3,4,5,8 
0 

(0,3) 
X 
X 
X 
2 
0 
2 
4 

0,1,6 
2,3,4 

0 
2 
0 

(1,3) 
X 
X 
X 
2 
0 
2 
4 
6 
4 

0,1,6 
2,3,4 

(2,3) 
X 
X 
X 
2 
0 
2 
0 
2 

0,4 
0,1,2,6 
2,3,4,5 

(3,3) 
X 
X 
X 
2 
0 
2 
0 
2 

0,4 
2,4,5,6 

4,5 

Table 5.1: Some known results for Stubborn Matchmaker. The left-hand side of the table 
lists the number of unmatched pairs. Above, the first number in the pair is the minimum 
number of loners, while the right is the larger number of loners. Listed nimbers assume the 
board has no crosses. 

We use this classification to make our evaluation more simple. Previously, it had been 

necessary to save the evaluation of every game, to speed up the already-exponential-time 

process. Unfortunately, the solution required exponential space. In storing our nimbers 

based only on classification, this lowers this space requirement substantially. 

Unfortunately, it also means that many classes contain games with different nimbers. 

Although we don't worry if two games are off by a parity of 1 (uncrossing edges will not 

change the classification), there are plenty of examples of classifications with such nimbers 

as 1,2,6 and 7 or 2,3,4 and 5. 

Based on the results collected so far, we see the following pattern: for most classes 

where (x — max(y, z)) is small (< 4), the game either has nimber 0 or nimber 2 (with no 

crosses). Determining which of the two is a simple parity computation! Also, once this 

difference becomes large enough, (roughly > 7—we are still running tests) it appears that 

the same is true, but with the parity reversed. Game positions either have parity 0 or 2, 

and the same computation (but with opposite results) reveals the actual nimber! 
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5 
6 
7 
8 
9 
10 
11 
12 

(0,4) 
0 
2 
0 

0,1,2 
2,3,4 

0 
2 
0 

(1,4) 
0 
2 
0 
2 
4 

0,1,6 
2,3,4 

(2,4) 
0 
2 
0 
2 
0 

0,1,2 
0,2,3,4,8 

(3,4) 
0 
2 
0 
2 
0 
2 

0,4,8 

(4,4) 
0 
2 
0 
2 
0 
2 
0 

(0,5) 
X 
2 
0 
2 
4 

0,1,6 
2,3,4 

0 

(1,5) 
X 
2 
0 
2 
4 
6 
4 

(2,5) 
X 
2 
0 
2 
0 
6 

0,4 

(3,5) 
X 
2 
0 
2 
0 
2 

0,4 

(4,5) 
X 
2 
0 
2 
0 
2 
0 
2 

Table 5.2: More known results for Stubborn Matchmaker. The notation is the same as in 
the previous table, but we start with five free pairs, as boards with less do not exist at this 
size. 

6 
7 
8 
9 
10 
11 
12 

(5,5) 
2 
0 
2 
0 
2 
0 
2 

(0,6) 
X 
0 
2 
0 

0,1,2 
2,3,4 

0 

(1,6) 
X 
0 
2 
0 
2 

2,3,4 
0,1,6 

(2,6) 
X 
0 
2 
0 
2 
0 

(3,6) 
X 
0 
2 
0 
2 
0 

(4,6) 
X 
0 
2 
0 
2 
0 

(5,6) 
X 
0 
2 
0 
2 
0 
2 

(6,6) 
X 
0 
2 
0 
2 
0 
2 

(0,7) 
X 
X 
2 
0 
2 
4 

0,1,6 

(1,7) 
X 
X 
2 
0 
2 
4 
6 

Table 5.3: More known results for Stubborn Matchmaker. The notation is the same as in 
the previous table, but we start with six free pairs, as boards with less do not exist at this 
size. 

Even if this pattern continues, however, this does not solve the entire problem. Indeed, 

for games with the difference inside that stripe, 4 < (x — max(y, z)) < 7, classes have a 

variety of nimber options. Also, since each of these classifications, (x, y, z) has game states 

with children in (x — 1, y — 1, z — 1), also in that stripe, we still may have to perform an 

exponentially-large search through the stripe in order to determine the nimber of a game. 

It appears that in order to determine the nimber of the game, further analysis will have to 

be done for games within this stripe! 

So far, we have determined many nimber possibilities, based on our classifications. Our 

results so far are displayed in Tables 5.1 through 5.4. This data, however, is based off some 

of the conjectures made earlier in this chapter. Trying to use the brute-force method of 
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8 
9 
10 
11 
12 

(2,7) 
2 
0 
2 
0 

2,6 

(3,7) 
2 
0 
2 
0 
2 

(4,7) 
2 
0 
2 
0 
2 

(5,7) 
2 
0 
2 
0 
2 

(6,7) 
2 
0 
2 
0 
2 

(7,7) 
2 
0 
2 
0 
2 

(0,8) 
2 
0 
2 
0 

0,1,2 

Table 5.4: More known results for Stubborn Matchmaker. The notation is the same as in 
the previous table, but we start with eight free pairs, as boards with less do not exist at 
this size. 

evaluating requires exponential resources to calculate the nimbers. 

In order to escape this issue (and get the results we have in the tables), we began to 

develop two more programs. The first of these, StubbornMatchmakerNimberizer, is an 

evaluator which determines the nimber of a game without looking at the child values. In 

order to perform this evaluation, we look for patterns within the classifications, then hard 

code them into this evaluator. Currently, this evaluator is imperfect, as we do not yet 

know how to determine the nimber of any game. We continue to improve this evaluator by 

adding classifications which it knows the rules to. 

In order to check the validity of the Nimberizer, we also employ a StubbornMatch

makerNimberizer Verifier, which verifies that the StubbornMatchmakerNimberizer correctly 

evaluates a class by recursively checking the classes of children of games within that class. 

It keeps track of classes verified and stops when it reaches a class which is not correctly 

evaluated by the Nimberizer. With this method, we can continue to write an evaluator 

without having to store the correct nimbers of all descendants. This greatly increases both 

our ability to analyze classes on larger game boards as well as our attention to potential 

patterns in coding an evaluator. Hopefully, as we gain a greater understanding of this game, 

we will be able to find an efficient evaluator for any game state. 
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"Making it real" 

Half of the adventure for these combinatorial games lies in actually playing them. In order 

to do this, we create both virtual and actual game boards in order to play the games. 

6.1 Atropos 

The first virtual board for Atropos was created in a Java applet, available to play online 

(see Figure 6.1). Fortunately, Atropos extends naturally to larger game boards, a facet we 

exploit in our implementation; the size of the triangle is changeable from one game to the 

next. This presented a bit of an issue in the coding problem: how do we generalize the 

boundary colors for boards of any size? Not just any alternation of the "right" colors for 

one side provides the actual desired game board. 

6.1.1 Correctly Coloring the Border 

Sperner's Lemma requires that along each of the sides, one of the three colors cannot be 

played (without losing the game). We want to disallow blue on the left-hand side of the 

triangle, red along the right-hand side and green along the bottom. Thus, we color each 

of those sides with alternating circles of the other two colors, directly enforcing Sperner's 

rules. The order of this alternation matters, however. If, for example, we colored the 
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Figure 6.1: The online Atropos applet. 

bottom (left-to-right) starting with blue, and colored the left-hand side (bottom-to-top) 

starting with green, suddenly no color may be played in the bottom-left corner. While it 

is true that we want to disallow blue and green, a player should be allowed to begin the 

game by playing red here! 

We can remedy this by forcing each corner to have at least one of the two boundary 

circles painted the "allowed" color (for that corner). Enforcing this proves to be the major 

roadblock in our board designs. 

For our online implementation, we clear this hurdle by choosing to start coloring our 

boundary edges from the correct place. For the bottom edge, we paint left-to-right starting 

with red, the allowed color for that bottom left corner. For the right-hand edge, we paint 

bottom-to-top starting with blue, the allowed color for the bottom right corner. For the left 

edge, we are less careful, but it turns out not to matter; we color from the bottom, starting 
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with green. Since we start on the left with green and on the right with blue, in any given 

horizontal row, either the left boundary circle will be green or the right boundary circle 

will be green. Thus, at the very top of the triangle, we can never have the configuration 

with the top colored red and blue, and the two boundary circles below them both green 

(this is the only configuration where no colors can be played in the top open circle on the 

game board). The implementation, available at http://cs-people.bu.edu/paithan/atropos/ 

as a Java applet, demonstrates the coloration choice for the boundary. 

6.1.2 Borders in the Physical Prototype 

In addition, we created a physical prototype of a game board, pasted to poster board. Here, 

players play colored poker chips on uncolored (white) circles for their moves. (Instead of 

using the color green, we use yellow, since this color poker chip is easier to find.) We 

encountered the same problem: creating a board that could be resized between games. To 

do this, we provide a large Sperner Triangle with the boundaries colored properly, but also 

with all but the top four horizontal rows also colored as though they were the bottom row. 

Without any other props, the game may be played as though on a size-four board. In order 

to play on a larger board, white poker chips are provided; the number of extra rows desired 

are added by covering the appropriate pre-colored circles with the white poker chips. (See 

Figure 6.2 for the color layout, and Figure 6.3 for a photo of the actual prototype.) In this 

way, one physical board can be used for many different sizes of games of Atropos! 

6.1.3 Extensions to the Physical Game 

In the search for opponents with which to enjoy Atropos, we find many people uninterested 

in trying to analyze numerous turns ahead. Thus, we added an element of chance to the 

game, allowing players who lose to assign some of the blame to the randomness. 

http://cs-people.bu.edu/paithan/atropos/
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-<Q>-QQQP 
_ j<0)#<0) 

_dD_dD#(]D#(II) 
_ _|<0)#<0)#<E 

CE<D#<Q)#<0>#<Q>~ 
><Q)#<Q)#<0)#<E 

Figure 6.2: Layout of coloration for prototype board. We can cover inside rows with white 
poker chips to increase the size of the board. 

6.1.4 Atropos with Dice 

Initially, we included dice to the game, with each side colored with some combination of 

red, blue and yellow circles. In order to create these dice, I purchased blank white and 

ivory colored dice, then drew circles on the sides with paint markers. The first of these uses 

a six-sided die with the coloration {R, B, Y, RB, RY, YB} (one side with a red circle, one 

with a blue circle, one with a yellow circle, one with red and blue, one with red and yellow 

and one with yellow and blue). 

Definition 6.1.1 (Atropos with a Die) Atropos with a Die is the same game as At

ropos, except that before each turn, a player rolls a die, then must play one of the colors 

showing on that side. The die used throughout the game is chosen before the game starts 



www.manaraa.com

77 

... ^ * • .* ik • J P 1 ' 

. v . ; s - • • , . . , . • . • • • • ' • • . . ; . ' ; a 

: • © • '"•'•"' 

JIQQPO 
JRQQPO© 

P3V°OVOVP € 
T-s. « • f •- t 
" w * * . ,'• • « i * . 
• J * * : ™ ' - i f f . • ; - . • : • . ' . ' 

&&X "I . .. .'-.v 4 | j A 

Figure 6.3: Photo of the actual prototype. 

(see the below list for dice used in the game). 

We found some success in this; some players were far more willing to play the die version 

than regular Atropos. I bought more dice and painted their sides differently. At this point, 

we have the following die schemes: 

• 4-sided: {RB, RY, YB, RYB} 

• 6-sided: {R,B,Y,RB,RY,YB} 

• 6-sided: {R,R,B,B,Y,Y} 

• 8-sided: {R,B,Y,RB,RY,YB,RYB,RYB} 

• 10-sided: {R,B,Y,RB,RB,RY,RY,YB,YB,RYB} 

• 12-sided: {R, R, B, B, Y, Y, RB, RY, YB, RYB, RYB, RYB} 

• 20-sided: {RBY,RBY,RY,RY,RY,RB,RB,RB,YB,YB,YB,R,R,R,B,B,B, Y, 

Y,Y} 
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Aside from the inherent fun in rolling dice, this game also acts as a canvas for creating 

simple examples for probabilistic analysis. I have used this as a method for teaching basic 

probability to students. This can be done by playing the game until you reach a potentially 

dangerous situation. For example, the only playable circle might be a position where blue 

needs to be played; either yellow or red will create a three-colored triangle. One can 

look at the die ({R, B, Y, RB, RY, YB}, for example) and ask the question, "What is the 

probability that the current player will lose this turn?" before the die is thrown (in this 

case, that probability is .5). This can lead to more complex examples where you can ask 

the question, "What is the probability that if the current player does not lose, the next 

player will lose?" Here that value may rely on the choices that come up on the die, which 

can change the choices of the next player. 

©0© 
©©o© 
0©Q© 

OO 
Figure 6.4: An example for the dice version of Atropos. If the next play must take place 
in the top-most open circle, we can analyze the probability a player losing in the next few 
turns. 

As an example, see Figure 6.4. If we are using the {R, B, Y, RB, RY, YB} die, and the 

next play must be made in the top-most circle in the diagram, then already the next player 

has a chance of losing. Playing either B or R will suffice, but a play of Y will force the 

player to lose. Thus, the current player has a g chance of losing this turn. If the current 

player colors B, the next player must roll either Y or B to be able to play safely. Otherwise, 

if instead they play R, the next player must roll B to survive. Thus, the current player 

would prefer to color the next circle R, which three of the six sides (R, BR, RY) of the die 

allow. For two of the sides (B,YB) they will instead play B.. 

If the current player plays R, the next player must roll B and thus has three chances 

(B,YB,RB) to survive and thus loses with probability | . If the current player plays B, 

the next player may roll either Y or B and thus loses only if they roll the side R, which 
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occurs with probability g. 

Thus, in total: 

Pr [Current Player loses] > Pr [Current Player loses this turn] 

= Pr [Current Player Rolls side 'Y'} 

l 
6" 

And 

Pr [Current Player Wins] = 

= Pr [Next Player loses] 

> Pr [Next Player loses next turn] 

Current Player does not lose this turn AND 

Next Player loses next turn 

Current Player does not lose this turn AND 

((Current Player Plays 'R' AND Next Player loses next turn) OR 

(Current Player Plays 'B' AND Next Player loses next turn)) 

6 V 2 2 ^ 3 6 / 

Pr 

= Pr 

> 

55 
216 

6* 

This analysis suggests that the current player has an advantage, since they have a higher 

probability of winning next turn than losing this turn. 

In tighter board situations, this analysis can be continued into further turns, but when 

there are too many move options the calculation quickly becomes overly complicated. 

6.1.5 Atropos with Cards 

Although we had success with dice, it was still somewhat limited. In another effort to add 

interest, we extended the game differently, this time to inject randomness via the use of 

cards. To do this, we created a deck of approximately forty-three cards. One of the cards 

has all three colors (red, yellow and blue) on it, while the rest have either one or two colors 

on them. In the deck there are 7 each of these six cards (red, yellow, blue, red-blue, red-

yellow, blue-yellow). At the beginning of the game, the 3-colored card is face up, meaning 
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that the current player can choose to play any of the three colors. Players may change the 

current options by playing a card from their hand. Thus, if a player plays a card with a 

red and blue circle on it, whoever is taking their turn must color the next circle either red 

or blue. If this would force them to make an illegal play, they lose the game. 

More formally, the rules are as follows. 

Definition 6.1.2 (Atropos with Cards) Atropos with Cards uses the same basic rules 

as Atropos, except that we add the use of cards (colored as described above). Rules for 

including these cards are as follows. At the beginning of the game, all players begin with 

one randomly-dealt card in hand. The three-colored card begins as the top card in the face-up 

pile. 

Each turn consists of two phases: 

• Card-Playing: beginning with the current player and continuing in turn order, each 

player may either pass or play one card from their hand. Whenever a card is played, 

place it on top of the previous face-up card. If all players pass, or if a card is played 

and then all other players pass, this phase ends. 

• Coloring: the current player chooses a color displayed on the top-most face-up card 

and plays in a legal uncolored circle (this changes depending on whether the restricted 

or unrestricted variant is being used). If that player creates a bad triangle with this 

coloring, that player loses the game. Otherwise, the current player draws a card and 

play continues with the next player's turn. 

This game has a nice natural extension to multiple players. If a player creates a bad 

triangle, they drop out and the game continues with the remaining contestants. The issue 

here is that Sperner's Lemma only enforces that there will be at least one bad triangle. Thus, 

we cannot allow the losing player to actually create the three-colored triangle. Instead, we 

amend the definition of the coloring phase as follows: 
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Definition 6.1.3 (Multi-player Atropos with Cards) We attain Multi-player Atro-

pos with Cards from Atropos with Cards, by only replacing the "Coloring" rule with the 

following rule: 

• Coloring: the current player chooses a color displayed on the top-most face-up card 

and plays in a legal uncolored circle without creating a three-colored triangle. If this 

is impossible, instead that player loses the game. All remaining cards in that player's 

hand are given to the player who played the last card (or discarded if that player is 

no longer in the game). The current player drops out of the game and play continues 

with the next player. If only one player is left, that player wins. If the current player 

does not lose, that player draws a card and play continues with the next player's turn. 

This variant is very enjoyable and is highly recommended for casual play with friends. 

When played face-to-face with other people, the above play order rules become far less 

strict; game play is both fast and tense. 

6.1.6 A n A u t o m a t e d Atropos Opponent 

In order to increase the functionality of the Atropos applet, an automated opponent was 

added. Since the game is PSPACE-complete, we implemented the simplest possible op

ponent: our program chooses uniformly from random amongst the possible play locations 

(which have a non-losing color available) then chooses a random non-losing color to play in 

that circle. If none of the possible play locations are safe, the program chooses to play red 

in one of them, losing the game. Despite the lack of strategy in this opponent, it is a good 

tool for learning how to trap an opponent. In the applet, only the second player can be 

set as automated. Thus, for the smallest size available in the applet (4, meaning four open 

circles along each edge) playing "against the computer" means that player two will fill in 

the last open circle if the game does not end sooner. In this instance, it is very simple for 

a player to simply survive until the triangle is full and win. 

On the other hand, for board sizes of 5 and 6, if the Sperner Triangle is fully-colored 
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at the end of the game, player one (the human player) will color the final circle and lose. 

Because of this, a player in this situation must be able to force the program into a trap 

ahead of time. Since there is less space to work with on the board at size 5, this task is 

quite difficult. It becomes somewhat more possible on size 6 boards. 

As the board size increases, this pattern continues. Boards of 7 and 8 open circles on 

a side are easier to win because they can simply survive to the end of the game. Boards 

of 9 an 10 are more difficult because the human player has to create a trap. (These are, 

however, easier than with sizes 5 and 6, since there is more open board space to build traps 

with.) See Section 5.2 for more on the winnability of initial boards. 

In the fall semester of 2007 at Boston University, Professor Margrit Betke used Atropos 

as a final programming project for her Artificial Intelligence class. Students worked in 

teams of two to write code to play Atropos mostly using minimax techniques. At the end 

of the class, a tournament was run between code all fifteen groups had written. 

Most of the algorithms based their evaluations on counting the number of circles adja

cent to the last play. The idea here was that locations with less possible neighbors were 

worse to play from because they had less play options. Using this logic, it seems that many 

students were frustrated with the results, even when testing against a randomized oppo

nent. This is likely because they prematurely moved into losing positions; the evaluator 

would rate a position with no neighbors poorly, and thus rating a move to that position 

highly, even if moving there was a losing play! One of the best programs, however, did use 

this tactic combined with the avoidance of immediate losses to evaluate plays. 

6.1.7 Atropos Variants 

Our implmentation of Atropos allows players to choose between both major variants of 

the game: the restricted and unrestricted versions. Since Restricted Atropos is PSPACE-

complete, this has been set as the default variant. Unrestricted Atropos was added after 

a request for another version1. Although this game may not be as challenging, it is still 

1Dan Spielman asked for this version to play with his children. 
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pedagogically useful for teaching Sperner's Lemma. 

All of the other settings for the game work for both versions, including the automation 

of the computer opponent. 

, 6.1.8 Atropos for Facebook 

During the 2008-2009 academic year, I enlisted the help of Boston University students Ryan 

Fleisher and Robert Solorio to create a version of Atropos for the social networking website 

Facebook. We plan to finish the application near the end of the academic year and make 

it available soon afterwards. 

6.2 Mat chmaker 

We already have a Java applet for Stubborn Matchmaker2. Just as with our Atropos applet, 

this allows players to change the board size between games (see Figure 6.5). Unlike Atropos, 

we do not yet have a computer-based opponent. 

The Matchmaker applet has some additional features as compared to the Atropos ver

sion, all of which concern changing the game settings. In Matchmaker, the settings of 

the game cannot be changed in the midst of a game. Thus, once the first move has been 

made, the settings panel is deactivated until the winning move is played. Because of this 

restriction, we also added an "I Give Up!" button to prematurely end games (see Figure 

6.5). 

6.2.1 Poster Matchmaker 

Unlike Atropos, the mechanics behind virtual Matchmaker designs don't carry over directly 

to actual hard copies. The issue of a physical representation of the edges in the matching 

presents a problem: how can these connections be represented easily (and inexpensively)? 

The natural tendency towards using string presents a dual problem of lengths and knotting. 

2The applet is available at http://cs-people.bu.edu/paithan/matchmaker/ . 

http://cs-people.bu.edu/paithan/matchmaker/
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Figure 6.5: Applet for Matchmaker. 

The length of the string needed between the top candidates from West and East in far less 

than that needed to connect the worst from West with the best from East. Thus something 

with far more elasticity than basic string would be necessary; the game state wouldn't be 

clear if the line between two nearby candidates wasn't taut and instead spaghettied through 

the rest of the matching. The connections also need to be easy to manipulate. String again 

fails this test, as it could easily become entangled in the other pieces as the matching 

changed. 

The need to resolve these issues arose when the time came for the annual poster session in 
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the Computer Science department3. The previous year had been a big success with Atropos; 

the poster had used velcro pieces so that viewers could actually play on an empty board in 

the middle of the poster. We hoped for a similar interactive set up with Matchmaker. 

Luckily, we found a solution to circumvent the entire connector problem. Instead of 

using any sort of physical connection between matched candidates, we simply printed a 

number of pairs of tiles, each with a different symbol of picture on them. Now, again using 

velcro to attach the game pieces to the poster, a pair could be matched by covering the 

two candidates with two identical tiles. In this way, it was still clear which matches were 

prevalent, despite the lack of any physical edges between the sides of the board. This allowed 

players to consider the strategy of a situation rather than the task of untangling the existing 

edges. Additionally, it adds challenge to the human task of counting crosses between the 

edges; it's far more difficult to see such intersections when they aren't immediately visible. 

6.3 Dictator 

In the spring of 2007, Atropos was presented as a poster for the computer science depart

ment's IAP day and in the following year, Matchmaker had the same honor. In 2009, 

Dictator had the chance to have a poster form, which required some logistical decisions to 

properly present this complex game. 

Here, instead of having just one game board, a secondary board was needed for players 

to present their Pareto violation proofs. This aspect made it difficult to squish enough 

information about the game background and rules onto the poster, but the sacrifice of 

space paid off. In order to properly explain the game to someone, it is best to play through 

a sample game. In order to do that, however, the extra space is needed for novices to tinker 

with proof generation. 

After I won the first few games at the open house, visitors quickly realized the need to 

spend extra time on examining potential proofs. Thus, although the actual turn plays were 

3Boston University Computer Science hosts an annual Industrial Affiliates Program (IAP) day, part of 
which includes a poster session to present current research amongst the graduate students. 
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taking place on the game board, the lower board was often updated as a clone of the first. 

The idea behind this secondary board is that players could start with the current board and 

describe their series of IIA manipulations without changing the actual state of the game. 

Thus, if the chain of proof steps didn't work out, the state of the board would be retained 

and play could continue. In addition, the result of the lower board was malleable, and 

had rows of velcro instead of just single-space boxes. In this way, the effects of each IIA-

manipulation could be recorded, with some candidates possibly losing their strict ordering 

relationships. 

For novices it had the extra benefit of being a testing ground for possible manipulation 

moves. As visitors learned better how to use IIA in their favor, they were soon able to 

prove Pareto violations themselves4. This two-board model seems like a good format for 

the game and should likely be used in any future incarnations of Dictator. 

Although it would be wonderful to have a working Dictator prototype (be it physical 

or another applet game) a major obstacle stands in its path. Not only is it difficult for new 

players to quickly grasp all the rules of the game, but it is the first of our games which is 

easy to play on a whiteboard. Atropos requires the initial set up of the triangular array 

of circles with the correct coloration of the border (which is not immediately obvious, as 

described in Section 6.1.1). Matchmaker, on the other hand, requires frequent changing of 

the edges between candidates, leading to lots of erasing and redrawing. Dictator, however, 

requires extremely simple initial set up and only a small amount of erasing while using 

IIA-manipulations. For this reason, many of the games I've participated in have taken 

place on a whiteboard and the need for an organized board isn't as great. 

6.4 Summary 

Games are meant to be played, and having working versions of these games has been 

a great motivator to study their complexity. The true value of these prototypes is the 

accessibility they allow for game play. Virtual prototypes have the added advantage of ease 
4I lost two games out of about ten. 
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and availability of play (for our applets, only a Java-enabled web browser is needed) while 

physical prototypes yield more freedom during playtesting. 

Moreover, the existence of playable versions of our games has added to their popularity. 

With the physical and virtual versions of Atropos and all the development towards injecting 

randomness into the game, I have played a variety of versions with different groups of 

people. Furthermore, having a software version of Atropos allowed for use in Margrit 

Betke's artificial intelligence course (see Section 6.1.6). 

With all these bonuses from implementing Atropos, there is little doubt that similar 

advancements should be made for Matchmaker, especially for creating a useable physical 

prototype. Although Dictator does have the advantage of being easy to play on a white

board, the advantages of creating a software implementation are great enough that this is 

another future goal for our game development. 

One of the great lessons of this work is the importance of implementing games, both 

for recreation and the natural and automatic study that occurs while playing. 
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Pedagogical Contributions 

By design, our games are furnished from problems and topics often arising in computational 

economics. Not only do these themes provide interesting boards for the games, they also 

act as an interactive arena to explore the underlying principles to these fundamentals. We 

use this chapter to focus solely on the potential contributions of this work towards teaching. 

7.1 Atropos 

Sperner's Lemma has recently joined the limelight in topics covered in advanced game 

theory and economics courses. This is due in no small part to its relevance in showing 

the PPylD-hardness of finding Nash equilibria[6] [7]. In fact, in one of these presentations, 

Atropos is described as "an lovely pedagogical device" for teaching Sperner's Lemma [17]1. 

Even a description of the rules of Atropos often inspires a new player to ask, "Wait, 

what happens if no one loses?" Although one can teach the lemma, it often becomes more 

instructive to play through an entire game of Unrestricted Atropos to show that not all 

the circles can be safely colored by the end of the game. Although initially we didn't have 

the unrestricted version playable online, we added it after it was requested. The apparent 

simplicity in strategies for Unrestricted Atropos does not detract from its ability to reveal 

1Professor Scarf begins mentioning Atropos about 25 minutes into the video. 



www.manaraa.com

89 

the correctness of Sperner's Lemma. 

On the other hand, Restricted Atropos lacks a little in teaching the lemma; the game 

can end well before the board gets filled up. This can, however, be seen as part of the 

challenge of the game: one player can focus on just trying to fill up the entire board (this 

is the player who would not have to fill in the last open circle on the board). This player 

is relying on Sperner's Lemma to win the game, while the other player (who would have to 

play at that last circle) has to set up a trap to end the game more swiftly (while not falling 

into the trap themselves). 

Additionally, the difference between the two versions and the apparent difference in 

strategy complexity can be used as a tool for describing the intricacies of reduction proofs. 

The proof of Theorem 4.1.3 is very dependent on the "moving restriction", evidenced in 

each of the widgets used. 

Furthermore, as mentioned in Section 6.1.4, we can use the dice version of Atropos to 

explore probabilities of winning a game in the next few turns. In that section, we explored 

a few scenarios, but it could also be used to point out just how swiftly the calculations 

grow once analysis continues beyond a few turns. I have already successfully used this 

randomized Atropos variant as an example for explaining basic probability concepts to a 

student. 

7.2 Matchmaker 

Although the version of Stable Marriage reflected in Matchmaker is not the basic model 

of the problem, it still carries the basic idea; the only real change is the use of universal 

preference lists for the candidates. The idea of the stable state of the game is extremely 

clear after the final Matchmaker move. 

Both Matchmaker and Stubborn Matchmaker also carry a lot of interesting baggage for 

the realm of impartial games. The analysis of game states with Sprague-Grundy results in 

interesting viewpoints for intuition behind nimbers. For example, in both games, it appears 
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that uncrossing two edges changes the nimber by an xor-factor of 1. The relative intuition 

is that this uncrossing is the smallest possible move that can be made on a board; any 

uncross influences the overall parity of the game in the same way. 

Stubborn Matchmaker is an interesting realm for teaching nimbers, as strategies for play 

are not immediately obvious (even if the game winds up to be solvable in polynomial-time). 

Properties of the game lend simplicity as well as complexity to any analysis, each of which 

has ramifications on the nimbers. Too many (non-Nim) examples in the current field are 

either too simple or too complex. Stubborn Matchmaker lies somewhere inbetween. 

7.3 Dictator 

Arrow's Theorem is an easy enough result to be able to read and reference at parties with 

politically-curious folk, though the details of the proof are far more hairy. The manipulation 

of ballots via IIA is not an easy task, and there are few venues to practice with. 

Now, using the Dictator board as an arena, the importance of IIA is clear. To win, 

players must not only understand the statement of Arrow's Theorem, but the fundamentals 

of the proof techniques. Good players of Dictator will follow a proof of the theorem, even 

if Arrow's result is a new concept to them! 

Unfortunately, unlike Atropos and Matchmaker, Dictator is a game that is likely not 

playable below a high-school level, and perhaps not below the college level. Atropos and 

Matchmaker can be played without learning the intricacies of the underlying theorems, 

but Dictator requires players to prove things during the game. Although this obviously 

has positive ramifications on understanding Arrow's Theorem, it presents difficulties in 

introducing players to the game. Sample situations, such as those given in Section 3.4, 

are instrumental in explaining Dictator to new players. Often many games must be played 

before novices have a firm grasp of the rules. 
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Conclusions 

In this chapter, we summarize the accomplishments of this dissertation. We mention both 

complexity and algorithmic results as well as discuss the online implementations we've 

created. In the end, we see that we have done a great deal of design on the three games 

and find the current versions of all three to be fun and challenging for players. 

8.1 Atropos 

Sperner's Lemma and its equivalence to the Brouwer Fixed-Point theorem gave us the first 

inspiration for a new combinatorial game, culminating in the birth of Atropos. 

Atropos is a fun, original impartial game based on a colorful topic used in both Computer 

Science and Economics. We have two different versions of this game, one of which we proved 

to be PSPACE-complete in Theorem 4.1.1. At the same time, we have brute-force studied 

the winnability of initial game boards and begun to see a repeating pattern, as described 

in Section 5.2. This pattern is reminiscent of the repeating pattern seen in initial Sprouts 

configurations [13], although the general complexity of Atropos is known. 

In addition to the standard game, we have many variants of Atropos, suitable both 

for instruction (Unrestricted Atropos) and competetive play (randomized versions). Our 

randomized variants offer public randomness (Die version, see Section 6.1.4) as well as 
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imperfect information and rules for more than two players (Atropos with Cards, see Section 

6.1.5). These games are all enjoyable, while still carrying the spirit of the original game. 

Additionally, for both the standard and unrestricted versions, we provide an online Java 

applet. This program contains a simple randomized computer opponent which still provides 

a challenge, especially for novice players. 

8.2 Matchmaker 

Matchmaker is an original impartial game played using the fundamentals of the Stable 

Marriage problem. The rules are simple and easy to learn. Lemma 4.3.1 shows that Pull 

Matchmaker is solvable in polynomial time. Although this is not the version often played, 

the other two major variants become instances of Pull Matchmaker at the end of the game. 

Although the complexity of these other two remains unsolved, we have studied both 

extensively. To do this, we developed our own Java packages to calculate the nimbers of 

impartial games. These classes are very reusable and can be used with any impartial game 

(even misere games). Although this code requires an exponential amount of time to perform 

the nimber evaluation, we were able to use this data to see the patterns described in Section 

5.3 in Stubborn Matchmaker. 

To continue analysis on Stubborn Matchmaker, we first created an applet to play it. 

After making this available online, we upgraded our analysis tools, writing more code that 

was tailored to evaluate this game. These programming tools are a great resource as our 

computer-assisted evaluation of Stubborn Matchmaker continues. 

8.3 Dictator 

Teaching the fundamentals of Arrow's Theorem is at the heart of Dictator. This third 

new impartial game, Dictator has two different challenges that take place each turn. On 

one hand, players must struggle to try to find a complex proof to show their opponent's 

violation. Even if they succeed in this, they must still try to determine a strategy to avoid 
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such a violation themselves. 

The dual-nature of these two complexities gives us the first chance to explore complexi

ties beyond the usual PSPAC.E-complete/polynomial-time dichotomy. Though in Lemma 

4.4.2, we show that Basic Dictator is solvable in polynomial-time, such a result is not at all 

clear for standard Dictator. Here we have two seperate complexity issues: the difficulty in 

determining whether there is a violation in the current board (this problem is in NP) and 

the difficulty in determining whether the current player has a winning strategy (this prob

lem is in PSPACE). Even if it turns out that the game is PSPACE-complete, answering 

the other question could still be interesting! 

As technology used in voting increases, allowing alternative systems to be used, a greater 

understanding of voting with preference lists could become necessary. Arrow's Theorem is 

at the heart of these systems, and Dictator uses Arrow's techniques for similar proofs. A 

competent player of Dictator already has a strong understanding of many of the tenets of 

modern voting theory. 

8.4 Overall Conclusions 

In all in this work we have defined three games and developed them to try to reach some 

computational hardness result in order to make them non-trivial for actual play. Atro-

pos, as we showed, is PS'P^C.E-complete. Meanwhile, the complexity of Matchmaker is 

not currently known, although the game play is certainly difficult for human competition. 

Although we do not yet have complexity results for Dictator, there are two avenues for 

potential hardness, both of which are exciting facets of this voting game. 

On a higher level, however, we see that this design process is a legitimate tactic for 

developing combinatorial games. Each of these three games began with a different academic 

topic as inspiration, and went through many phases before reaching their current state. 

All three began with simple rules before undergoing rounds of analysis challenging their 

computational complexity. This process both results in a computationally hard game as 
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well as preserves the simplicity of the rules by only making small changes after each round 

of analysis. Thus, we continue to adhere to the rule "easy to play, hard to master" as we 

continue to develop these and more games. 
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Future Work 

In this chapter, we relate future possible avenues for study on these topics. Although 

this may not be an exhaustive list for inspired directions of research, it should provide 

good suggestions for further work. Since the games we present in this dissertation cover 

a wide range of topics, we hope that more readers will be interested in pursuing problems 

mentioned here. In this section, we relate each open problem and potentially follow it 

up with a conjecture, but also mention other concerns, including possible implementation 

plans for the games. 

9.1 Atropos 

In the standard version of Atropos, there is one great open question: which player has a 

winning strategy from the starting position? 

O p e n P r o b l e m 9.1.1 At the starting position of an Atropos game, is there an efficient 

algorithm to determine which player has a winning strategy? 

*We mimic the Sprouts Conjecture [2] in our own Atropos Conjecture (see Conjecture 

5.2.1), except that our pattern repeats with every four size increments, instead of six. We 

plan to continue analysis to either support or break this conjecture. 
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Additionally, similar open questions remain for Unrestricted Atropos. The grandest of 

these is the complexity of determining which player has the win. 

Open Problem 9.1.2 Is there an efficient algorithm to determine which of the players in 

the game of Unrestricted Atropos has a winning strategy? 

This problem is very intertwined with determining the winner of versions of Planar 

Kayles, and thus we look forward to further results on this topic. Here we hope for a negative 

result: that Unrestricted Atropos is solvable in polynomial time. If this happens, and the 

complexity turns out to be different from Atropos, then we can continue investigations by 

parameterizing the distance restriction between consecutive plays. 

On the other hand, a result about the winnability of Unrestricted Atropos from initial 

positions seems likely in the near future. 

Open Problem 9.1.3 From the initial position, does one of the players have an efficient 

algorithm for playing to win a game of Unrestricted Atropos. 

Due to the ease of actually playing this game, we make the following conjecture. 

Conjecture 9.1.4 One of the two players has an efficient strategy to win a game of Un

restricted Atropos from the initial position. If the starting board has an even number of 

uncolored circles, then this is the first player. Otherwise, the second player has the winning 

efficient strategy. 

9.2 Matchmaker 

With Matchmaker, we also have two different variants with open questions attributed to 

each of them. 

Open Problem 9.2.1 Is there an efficient algorithm to determine which player has a 

winning strategy in a game of Matchmaker? 
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This is the motivating problem for all our work on Matchmaker. This led to the creation 

of Stubborn Matchmaker in the hope of obtaining an easier game with only a slight tweak 

of the rules. Analysis of Stubborn Matchmaker, however, is also unfinished. 

Open Problem 9.2.2 Is there an efficient algorithm to determine which player has a 

winning strategy in a game of Stubborn Matchmaker? 

Although we are uncertain about standard Matchmaker, we are prepared to conjecture 

about the complexity of Stubborn Matchmaker. 

Conjecture 9.2.3 There exists an efficient algorithm to determine which player has a 

winning strategy in a game of Stubborn Matchmaker. 

Whether or not a result here would yield a speedy result for Matchmaker is unclear, 

but it seems that solving Stubborn Matchmaker will happen before Matchmaker. 

In addition to these open questions, we also note that only a Stubborn Matchmaker 

variant is available for play on our applet. We hope to extend the implementation to 

include the standard Matchmaker game. 

9.3 Dictator 

Dictator only has one variant in which we have a lot of interest. Here, however, there are 

many interesting open problems, dealing with the two separate facets of the game: choosing 

good moves and proving violations. As with Matchmaker, we have the grand problem of 

the overall game complexity. 

Open Problem 9.3.1 Is there an efficient algorithm to determine which player has a 

winning strategy in a game of Dictator? 

It could also be that the complexity of choosing where to play each turn is different 

than the overall strategy. Thus, the complexity could hinge either on making the best move 

on the board, being able to efficiently see Pareto violation proofs or some combination of 
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both. We have already showed that determining whether a proof exists is in NP, though 

we haven't yet narrowed down the complexity further. 

Open Problem 9.3.2 What is the complexity of determining whether a proof of a Pareto 

violation exists on a Dictator board? 

A hardness result for either of these problems would be preferrable and would give us 

a difficult game! Since Dictator is still very young, even a guess at the complexity of this 

game is unclear and thus we have not yet made any conjectures. 

Aside from these open problems, we still do not have a software implementation of 

Dictator. This is a big goal for the future, as such an program will be difficult to design, 

both as far as the interface is concerned as well as the underlying regulation of legal options 

for a player during their turn. It is likely that initial versions of this software will not 

regulate the construction of proofs but just be used to maintain the basic game board. 
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